stefan-insilico
commited on
Delete mpt_7b/precious_multi_modal.py
Browse files- mpt_7b/precious_multi_modal.py +0 -354
mpt_7b/precious_multi_modal.py
DELETED
@@ -1,354 +0,0 @@
|
|
1 |
-
from typing import Optional, Tuple, Union, List
|
2 |
-
|
3 |
-
from transformers.models.mpt.modeling_mpt import MptBlock, build_mpt_alibi_tensor
|
4 |
-
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
5 |
-
import torch
|
6 |
-
import torch.nn as nn
|
7 |
-
from torch.nn import CrossEntropyLoss, LayerNorm
|
8 |
-
from transformers.models.mpt.modeling_mpt import MptBlock, build_mpt_alibi_tensor
|
9 |
-
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions, CausalLMOutputWithPast, \
|
10 |
-
BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPast
|
11 |
-
# from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, MptForCausalLM, MptModel
|
12 |
-
from transformers import PreTrainedTokenizerFast
|
13 |
-
import os
|
14 |
-
import torch.nn.functional as F
|
15 |
-
|
16 |
-
from modeling_mpt import MPTModel, MPTForCausalLM, gen_attention_mask_in_length
|
17 |
-
from configuration_mpt import MPTConfig
|
18 |
-
from blocks import MPTBlock
|
19 |
-
from norm import NORM_CLASS_REGISTRY
|
20 |
-
from custom_embedding import SharedEmbedding
|
21 |
-
from attention import ATTN_CLASS_REGISTRY, attn_bias_shape, build_attn_bias, gen_slopes
|
22 |
-
|
23 |
-
import logging
|
24 |
-
log = logging.getLogger(__name__)
|
25 |
-
|
26 |
-
|
27 |
-
class Custom_MPTConfig(MPTConfig):
|
28 |
-
def __init__(self):
|
29 |
-
super().__init__()
|
30 |
-
|
31 |
-
class CustomTokenizer(PreTrainedTokenizerFast):
|
32 |
-
def __init__(self, **kwargs):
|
33 |
-
super().__init__( tokenizer_file="../tokenizer.json",
|
34 |
-
unk_token="[UNK]",
|
35 |
-
pad_token="[PAD]",
|
36 |
-
eos_token="[EOS]",
|
37 |
-
bos_token="[BOS]", **kwargs)
|
38 |
-
|
39 |
-
|
40 |
-
class Custom_MptModel(MPTModel): # MptModel
|
41 |
-
def __init__(self, config: MPTConfig, modality0_dim=128, modality2_dim=1536):
|
42 |
-
config._validate_config()
|
43 |
-
super().__init__(config)
|
44 |
-
self.attn_impl = config.attn_config['attn_impl']
|
45 |
-
self.prefix_lm = config.attn_config['prefix_lm']
|
46 |
-
self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
|
47 |
-
self.alibi = config.attn_config['alibi']
|
48 |
-
self.alibi_bias_max = config.attn_config['alibi_bias_max']
|
49 |
-
self.learned_pos_emb = config.learned_pos_emb
|
50 |
-
if config.init_device == 'mixed':
|
51 |
-
if dist.get_local_rank() == 0:
|
52 |
-
config.init_device = 'cpu'
|
53 |
-
else:
|
54 |
-
config.init_device = 'meta'
|
55 |
-
if config.norm_type.lower() not in NORM_CLASS_REGISTRY.keys():
|
56 |
-
norm_options = ' | '.join(NORM_CLASS_REGISTRY.keys())
|
57 |
-
raise NotImplementedError(f'Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options}).')
|
58 |
-
norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()]
|
59 |
-
self.embedding_fraction = config.embedding_fraction
|
60 |
-
self.wte = SharedEmbedding(config.vocab_size, config.d_model, device=config.init_device)
|
61 |
-
if self.learned_pos_emb:
|
62 |
-
self.wpe = torch.nn.Embedding(config.max_seq_len, config.d_model, device=config.init_device)
|
63 |
-
self.emb_drop = nn.Dropout(config.emb_pdrop)
|
64 |
-
self.blocks = nn.ModuleList([MPTBlock(device=config.init_device, **config.to_dict()) for _ in range(config.n_layers)])
|
65 |
-
self.norm_f = norm_class(config.d_model, device=config.init_device)
|
66 |
-
|
67 |
-
|
68 |
-
### Added for P3GPT - START
|
69 |
-
# Freeze all parameters except the projection layer
|
70 |
-
for param in self.wte.parameters():
|
71 |
-
param.requires_grad = False
|
72 |
-
|
73 |
-
for param in self.blocks.parameters():
|
74 |
-
param.requires_grad = False
|
75 |
-
|
76 |
-
# Add a projection layer for the custom embedding
|
77 |
-
# torch.set_default_dtype(torch.bfloat16)
|
78 |
-
self.modality0_embedding_projection = nn.ModuleList([nn.Linear(modality0_dim, config.d_model),
|
79 |
-
# nn.BatchNorm1d(config.d_model),
|
80 |
-
nn.ReLU(),
|
81 |
-
nn.Linear(config.d_model, config.d_model),
|
82 |
-
# nn.BatchNorm1d(config.d_model),
|
83 |
-
nn.ReLU(),
|
84 |
-
nn.Linear(config.d_model, config.d_model)])# nn.Linear(modality0_dim, self.hidden_size)
|
85 |
-
|
86 |
-
|
87 |
-
self.modality2_embedding_projection = nn.ModuleList([nn.Linear(modality2_dim, config.d_model),
|
88 |
-
# nn.BatchNorm1d(config.d_model),
|
89 |
-
nn.ReLU(),
|
90 |
-
nn.Linear(config.d_model, config.d_model),
|
91 |
-
# nn.BatchNorm1d(config.d_model),
|
92 |
-
nn.ReLU(),
|
93 |
-
nn.Linear(config.d_model, config.d_model)])# nn.Linear(modality0_dim, self.hidden_size)
|
94 |
-
|
95 |
-
|
96 |
-
### Added for P3GPT - FINISH
|
97 |
-
|
98 |
-
self.rope = config.attn_config['rope']
|
99 |
-
self.rope_impl = None
|
100 |
-
if self.rope:
|
101 |
-
self.rope_impl = config.attn_config['rope_impl']
|
102 |
-
self.rotary_embedding = gen_rotary_embedding(rope_head_dim=config.d_model // config.n_heads, rope_impl=self.rope_impl, rope_theta=config.attn_config['rope_theta'], rope_dail_config=config.attn_config['rope_dail_config'], rope_hf_config=config.attn_config['rope_hf_config'], max_seq_len=self.config.max_seq_len)
|
103 |
-
if config.init_device != 'meta':
|
104 |
-
log.info(f'We recommend using config.init_device="meta" with Composer + FSDP for faster initialization.')
|
105 |
-
self.apply(self.param_init_fn)
|
106 |
-
self.is_causal = not self.prefix_lm
|
107 |
-
self._attn_bias_initialized = False
|
108 |
-
self.attn_bias = None
|
109 |
-
self.attn_bias_shape = attn_bias_shape(self.attn_impl, config.n_heads, config.max_seq_len, self.alibi, prefix_lm=self.prefix_lm, causal=self.is_causal, use_sequence_id=self.attn_uses_sequence_id)
|
110 |
-
if config.no_bias:
|
111 |
-
for module in self.modules():
|
112 |
-
if hasattr(module, 'bias') and isinstance(module.bias, nn.Parameter):
|
113 |
-
log.info(f'Removing bias from module={module!r}.')
|
114 |
-
module.register_parameter('bias', None)
|
115 |
-
if hasattr(module, 'use_bias'):
|
116 |
-
log.info(f'Setting use_bias=False for module={module!r}.')
|
117 |
-
module.use_bias = False
|
118 |
-
log.debug(self)
|
119 |
-
log.debug(f"Using {self.config.init_config['name']} initialization.")
|
120 |
-
|
121 |
-
# Initialize weights and apply final processing
|
122 |
-
# self.post_init()
|
123 |
-
|
124 |
-
|
125 |
-
def get_input_embeddings(self):
|
126 |
-
return self.wte
|
127 |
-
|
128 |
-
|
129 |
-
def set_input_embeddings(self, new_embeddings):
|
130 |
-
# self.wte = new_embeddings
|
131 |
-
self.wte.weight = new_embeddings
|
132 |
-
|
133 |
-
|
134 |
-
def forward(self, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None,
|
135 |
-
attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None,
|
136 |
-
sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None,
|
137 |
-
output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None,
|
138 |
-
inputs_embeds: Optional[torch.Tensor]=None, modality0_emb: Optional[bool] = None,
|
139 |
-
modality0_token_id: Optional[bool] = None, modality1_emb: Optional[bool] = None, modality1_token_id: Optional[bool] = None,
|
140 |
-
modality2_emb: Optional[bool] = None, modality2_token_id: Optional[bool] = None, modality3_emb: Optional[bool] = None,
|
141 |
-
modality3_token_id: Optional[bool] = None,) -> BaseModelOutputWithPast:
|
142 |
-
|
143 |
-
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
144 |
-
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
145 |
-
if attention_mask is not None:
|
146 |
-
attention_mask = attention_mask.bool()
|
147 |
-
if prefix_mask is not None:
|
148 |
-
prefix_mask = prefix_mask.bool()
|
149 |
-
if not return_dict:
|
150 |
-
raise NotImplementedError('return_dict False is not implemented yet for MPT')
|
151 |
-
if output_attentions:
|
152 |
-
if self.attn_impl != 'torch':
|
153 |
-
raise NotImplementedError('output_attentions is not implemented for MPT when using attn_impl `flash` or `triton`.')
|
154 |
-
if self.training and attention_mask is not None and (attention_mask[:, 0].sum() != attention_mask.shape[0]):
|
155 |
-
raise NotImplementedError('MPT does not support training with left padding.')
|
156 |
-
if self.prefix_lm and prefix_mask is None:
|
157 |
-
raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.')
|
158 |
-
if self.training:
|
159 |
-
if self.attn_uses_sequence_id and sequence_id is None:
|
160 |
-
raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.')
|
161 |
-
elif self.attn_uses_sequence_id is False and sequence_id is not None:
|
162 |
-
warnings.warn('MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.')
|
163 |
-
|
164 |
-
### ADDED FOR P3 - START
|
165 |
-
|
166 |
-
if modality0_emb is not None:
|
167 |
-
modality0_emb = torch.tensor(modality0_emb, dtype=torch.bfloat16)
|
168 |
-
hidden_states = self.wte.weight.detach()
|
169 |
-
|
170 |
-
for layer in self.modality0_embedding_projection:
|
171 |
-
modality0_emb = layer(modality0_emb)
|
172 |
-
proj_modality0_emb = modality0_emb
|
173 |
-
|
174 |
-
# Replace the original embedding for the custom token with the custom embedding
|
175 |
-
hidden_states[modality0_token_id, :] = torch.mean(torch.squeeze(proj_modality0_emb, 1), dim=0)
|
176 |
-
self.set_input_embeddings(torch.nn.Parameter(hidden_states))
|
177 |
-
|
178 |
-
if modality1_emb is not None:
|
179 |
-
modality1_emb = torch.tensor(modality1_emb, dtype=torch.bfloat16)
|
180 |
-
hidden_states = self.wte.weight.detach()
|
181 |
-
|
182 |
-
for layer in self.modality0_embedding_projection:
|
183 |
-
modality1_emb = layer(modality1_emb)
|
184 |
-
proj_modality1_emb = modality1_emb
|
185 |
-
|
186 |
-
# Replace the original embedding for the custom token with the custom embedding
|
187 |
-
hidden_states[modality1_token_id, :] = torch.mean(torch.squeeze(proj_modality1_emb, 1), dim=0)
|
188 |
-
self.set_input_embeddings(torch.nn.Parameter(hidden_states))
|
189 |
-
|
190 |
-
if modality2_emb is not None:
|
191 |
-
modality2_emb = torch.tensor(modality2_emb, dtype=torch.bfloat16)
|
192 |
-
hidden_states = self.wte.weight.detach()
|
193 |
-
|
194 |
-
for layer in self.modality2_embedding_projection:
|
195 |
-
modality2_emb = layer(modality2_emb)
|
196 |
-
proj_modality2_emb = modality2_emb
|
197 |
-
|
198 |
-
# Replace the original embedding for the custom token with the custom embedding
|
199 |
-
hidden_states[modality2_token_id, :] = torch.mean(torch.squeeze(proj_modality2_emb, 1), dim=0)
|
200 |
-
self.set_input_embeddings(torch.nn.Parameter(hidden_states))
|
201 |
-
|
202 |
-
if modality3_emb is not None:
|
203 |
-
modality3_emb = torch.tensor(modality3_emb, dtype=torch.bfloat16)
|
204 |
-
hidden_states = self.wte.weight.detach()
|
205 |
-
|
206 |
-
for layer in self.modality2_embedding_projection:
|
207 |
-
modality3_emb = layer(modality3_emb)
|
208 |
-
proj_modality3_emb = modality3_emb
|
209 |
-
|
210 |
-
# Replace the original embedding for the custom token with the custom embedding
|
211 |
-
hidden_states[modality3_token_id, :] = torch.mean(torch.squeeze(proj_modality3_emb, 1), dim=0)
|
212 |
-
self.set_input_embeddings(torch.nn.Parameter(hidden_states))
|
213 |
-
|
214 |
-
### ADDED FOR P3 - END
|
215 |
-
|
216 |
-
if input_ids is not None and inputs_embeds is not None:
|
217 |
-
raise ValueError('You cannot specify both input_ids and inputs_embeds.')
|
218 |
-
elif input_ids is not None:
|
219 |
-
bsz = input_ids.size(0)
|
220 |
-
S = input_ids.size(1)
|
221 |
-
x = self.wte(input_ids)
|
222 |
-
input_device = input_ids.device
|
223 |
-
elif inputs_embeds is not None:
|
224 |
-
bsz = inputs_embeds.size(0)
|
225 |
-
S = inputs_embeds.size(1)
|
226 |
-
x = inputs_embeds
|
227 |
-
input_device = inputs_embeds.device
|
228 |
-
else:
|
229 |
-
raise ValueError('You must specify input_ids or inputs_embeds')
|
230 |
-
assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
|
231 |
-
rotary_emb_w_meta_info = None
|
232 |
-
past_position = 0
|
233 |
-
if past_key_values is not None:
|
234 |
-
if len(past_key_values) != self.config.n_layers:
|
235 |
-
raise ValueError(f'past_key_values must provide a past_key_value for each attention ' + f'layer in the network (len(past_key_values)={len(past_key_values)!r}; self.config.n_layers={self.config.n_layers!r}).')
|
236 |
-
past_position = past_key_values[0][0].size(1)
|
237 |
-
if self.attn_impl == 'torch':
|
238 |
-
past_position = past_key_values[0][0].size(3)
|
239 |
-
if self.learned_pos_emb or self.rope:
|
240 |
-
if self.learned_pos_emb and S + past_position > self.config.max_seq_len:
|
241 |
-
raise ValueError(f'Cannot forward input with past sequence length {past_position} and current sequence length ' + f'{S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.')
|
242 |
-
if self.learned_pos_emb or (self.rope and self.rope_impl == 'hf'):
|
243 |
-
pos = torch.arange(past_position, S + past_position, dtype=torch.long, device=input_device).unsqueeze(0)
|
244 |
-
if attention_mask is not None:
|
245 |
-
pos = torch.clamp(pos - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[:, past_position:], min=0)
|
246 |
-
if self.learned_pos_emb:
|
247 |
-
x = x + self.wpe(pos)
|
248 |
-
elif self.rope and self.rope_impl == 'hf':
|
249 |
-
rotary_emb_w_meta_info = {'impl': self.rope_impl, 'rotary_emb': self.rotary_embedding, 'offset_info': pos, 'seq_len': S + past_position}
|
250 |
-
elif self.rope and self.rope_impl == 'dail':
|
251 |
-
rotary_emb_w_meta_info = {'impl': self.rope_impl, 'rotary_emb': self.rotary_embedding, 'offset_info': past_position, 'seq_len': S + past_position}
|
252 |
-
if self.embedding_fraction == 1:
|
253 |
-
x = self.emb_drop(x)
|
254 |
-
else:
|
255 |
-
x_shrunk = x * self.embedding_fraction + x.detach() * (1 - self.embedding_fraction)
|
256 |
-
assert isinstance(self.emb_drop, nn.Module)
|
257 |
-
x = self.emb_drop(x_shrunk)
|
258 |
-
(attn_bias, attention_mask) = self._attn_bias(device=x.device, dtype=torch.float32, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id)
|
259 |
-
attention_mask_in_length = gen_attention_mask_in_length(sequence_id=sequence_id, S=S, attn_uses_sequence_id=self.attn_uses_sequence_id, attn_impl=self.attn_impl, attention_mask=attention_mask)
|
260 |
-
alibi_slopes = None
|
261 |
-
if self.alibi and self.attn_impl == 'flash':
|
262 |
-
alibi_slopes = gen_slopes(n_heads=self.config.n_heads, alibi_bias_max=self.alibi_bias_max, device=x.device, return_1d=True)
|
263 |
-
|
264 |
-
presents = () if use_cache else None
|
265 |
-
if use_cache and past_key_values is None:
|
266 |
-
past_key_values = [() for _ in range(self.config.n_layers)]
|
267 |
-
all_hidden_states = () if output_hidden_states else None
|
268 |
-
all_self_attns = () if output_attentions else None
|
269 |
-
flash_attn_padding_info = {}
|
270 |
-
if self.attn_impl == 'flash':
|
271 |
-
flash_attn_padding_info = gen_flash_attn_padding_info(bsz, S, past_position, x.device, attention_mask_in_length, attention_mask)
|
272 |
-
for (b_idx, block) in enumerate(self.blocks):
|
273 |
-
if output_hidden_states:
|
274 |
-
assert all_hidden_states is not None
|
275 |
-
all_hidden_states = all_hidden_states + (x,)
|
276 |
-
past_key_value = past_key_values[b_idx] if past_key_values is not None else None
|
277 |
-
(x, attn_weights, present) = block(x, past_key_value=past_key_value, attn_bias=attn_bias, rotary_emb_w_meta_info=rotary_emb_w_meta_info, attention_mask=attention_mask, is_causal=self.is_causal, output_attentions=bool(output_attentions), alibi_slopes=alibi_slopes, flash_attn_padding_info=flash_attn_padding_info)
|
278 |
-
if presents is not None:
|
279 |
-
presents += (present,)
|
280 |
-
if output_attentions:
|
281 |
-
assert all_self_attns is not None
|
282 |
-
all_self_attns = all_self_attns + (attn_weights,)
|
283 |
-
x = self.norm_f(x)
|
284 |
-
if output_hidden_states:
|
285 |
-
assert all_hidden_states is not None
|
286 |
-
all_hidden_states = all_hidden_states + (x,)
|
287 |
-
return BaseModelOutputWithPast(last_hidden_state=x, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attns)
|
288 |
-
|
289 |
-
|
290 |
-
class Custom_MPTForCausalLM(MPTForCausalLM):
|
291 |
-
|
292 |
-
def __init__(self, config: MPTConfig):
|
293 |
-
super().__init__(config)
|
294 |
-
# log.info(f'Instantiating an MPTForCausalLM model from {__file__}')
|
295 |
-
self.transformer: MPTModel = Custom_MptModel(config)
|
296 |
-
self.lm_head = None
|
297 |
-
if not config.tie_word_embeddings:
|
298 |
-
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False, device=config.init_device)
|
299 |
-
self.lm_head._fsdp_wrap = True
|
300 |
-
for child in self.transformer.children():
|
301 |
-
if isinstance(child, torch.nn.ModuleList):
|
302 |
-
continue
|
303 |
-
if isinstance(child, torch.nn.Module):
|
304 |
-
child._fsdp_wrap = True
|
305 |
-
self.logit_scale = None
|
306 |
-
if config.logit_scale is not None:
|
307 |
-
logit_scale = config.logit_scale
|
308 |
-
if isinstance(logit_scale, str):
|
309 |
-
if logit_scale == 'inv_sqrt_d_model':
|
310 |
-
logit_scale = 1 / math.sqrt(config.d_model)
|
311 |
-
else:
|
312 |
-
raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
|
313 |
-
self.logit_scale = logit_scale
|
314 |
-
|
315 |
-
def forward(self, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None,
|
316 |
-
attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None,
|
317 |
-
sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None,
|
318 |
-
return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None,
|
319 |
-
use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.FloatTensor]=None,
|
320 |
-
modality0_emb: Optional[bool] = None, modality0_token_id: Optional[bool] = None,
|
321 |
-
modality1_emb: Optional[bool] = None, modality1_token_id: Optional[bool] = None,
|
322 |
-
modality2_emb: Optional[bool] = None, modality2_token_id: Optional[bool] = None,
|
323 |
-
modality3_emb: Optional[bool] = None, modality3_token_id: Optional[bool] = None) -> CausalLMOutputWithPast:
|
324 |
-
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
325 |
-
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
326 |
-
outputs = self.transformer(
|
327 |
-
input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask,
|
328 |
-
sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states,
|
329 |
-
use_cache=use_cache, inputs_embeds=inputs_embeds,
|
330 |
-
modality0_emb=modality0_emb,
|
331 |
-
modality0_token_id=modality0_token_id,
|
332 |
-
modality1_emb=modality1_emb,
|
333 |
-
modality1_token_id=modality1_token_id,
|
334 |
-
modality2_emb=modality2_emb,
|
335 |
-
modality2_token_id=modality2_token_id,
|
336 |
-
modality3_emb=modality3_emb,
|
337 |
-
modality3_token_id=modality3_token_id
|
338 |
-
)
|
339 |
-
if self.lm_head is not None:
|
340 |
-
logits = self.lm_head(outputs.last_hidden_state)
|
341 |
-
else:
|
342 |
-
out = outputs.last_hidden_state
|
343 |
-
out = out.to(self.transformer.wte.weight.device)
|
344 |
-
logits = self.transformer.wte(out, True)
|
345 |
-
if self.logit_scale is not None:
|
346 |
-
if self.logit_scale == 0:
|
347 |
-
warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.')
|
348 |
-
logits *= self.logit_scale
|
349 |
-
loss = None
|
350 |
-
if labels is not None:
|
351 |
-
_labels = torch.roll(labels, shifts=-1)
|
352 |
-
_labels[:, -1] = -100
|
353 |
-
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), _labels.to(logits.device).view(-1))
|
354 |
-
return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|