stefan-insilico commited on
Commit
0eb753a
·
verified ·
1 Parent(s): 7b44189

Delete mpt_7b/precious_multi_modal.py

Browse files
Files changed (1) hide show
  1. mpt_7b/precious_multi_modal.py +0 -354
mpt_7b/precious_multi_modal.py DELETED
@@ -1,354 +0,0 @@
1
- from typing import Optional, Tuple, Union, List
2
-
3
- from transformers.models.mpt.modeling_mpt import MptBlock, build_mpt_alibi_tensor
4
- from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
5
- import torch
6
- import torch.nn as nn
7
- from torch.nn import CrossEntropyLoss, LayerNorm
8
- from transformers.models.mpt.modeling_mpt import MptBlock, build_mpt_alibi_tensor
9
- from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions, CausalLMOutputWithPast, \
10
- BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPast
11
- # from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, MptForCausalLM, MptModel
12
- from transformers import PreTrainedTokenizerFast
13
- import os
14
- import torch.nn.functional as F
15
-
16
- from modeling_mpt import MPTModel, MPTForCausalLM, gen_attention_mask_in_length
17
- from configuration_mpt import MPTConfig
18
- from blocks import MPTBlock
19
- from norm import NORM_CLASS_REGISTRY
20
- from custom_embedding import SharedEmbedding
21
- from attention import ATTN_CLASS_REGISTRY, attn_bias_shape, build_attn_bias, gen_slopes
22
-
23
- import logging
24
- log = logging.getLogger(__name__)
25
-
26
-
27
- class Custom_MPTConfig(MPTConfig):
28
- def __init__(self):
29
- super().__init__()
30
-
31
- class CustomTokenizer(PreTrainedTokenizerFast):
32
- def __init__(self, **kwargs):
33
- super().__init__( tokenizer_file="../tokenizer.json",
34
- unk_token="[UNK]",
35
- pad_token="[PAD]",
36
- eos_token="[EOS]",
37
- bos_token="[BOS]", **kwargs)
38
-
39
-
40
- class Custom_MptModel(MPTModel): # MptModel
41
- def __init__(self, config: MPTConfig, modality0_dim=128, modality2_dim=1536):
42
- config._validate_config()
43
- super().__init__(config)
44
- self.attn_impl = config.attn_config['attn_impl']
45
- self.prefix_lm = config.attn_config['prefix_lm']
46
- self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
47
- self.alibi = config.attn_config['alibi']
48
- self.alibi_bias_max = config.attn_config['alibi_bias_max']
49
- self.learned_pos_emb = config.learned_pos_emb
50
- if config.init_device == 'mixed':
51
- if dist.get_local_rank() == 0:
52
- config.init_device = 'cpu'
53
- else:
54
- config.init_device = 'meta'
55
- if config.norm_type.lower() not in NORM_CLASS_REGISTRY.keys():
56
- norm_options = ' | '.join(NORM_CLASS_REGISTRY.keys())
57
- raise NotImplementedError(f'Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options}).')
58
- norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()]
59
- self.embedding_fraction = config.embedding_fraction
60
- self.wte = SharedEmbedding(config.vocab_size, config.d_model, device=config.init_device)
61
- if self.learned_pos_emb:
62
- self.wpe = torch.nn.Embedding(config.max_seq_len, config.d_model, device=config.init_device)
63
- self.emb_drop = nn.Dropout(config.emb_pdrop)
64
- self.blocks = nn.ModuleList([MPTBlock(device=config.init_device, **config.to_dict()) for _ in range(config.n_layers)])
65
- self.norm_f = norm_class(config.d_model, device=config.init_device)
66
-
67
-
68
- ### Added for P3GPT - START
69
- # Freeze all parameters except the projection layer
70
- for param in self.wte.parameters():
71
- param.requires_grad = False
72
-
73
- for param in self.blocks.parameters():
74
- param.requires_grad = False
75
-
76
- # Add a projection layer for the custom embedding
77
- # torch.set_default_dtype(torch.bfloat16)
78
- self.modality0_embedding_projection = nn.ModuleList([nn.Linear(modality0_dim, config.d_model),
79
- # nn.BatchNorm1d(config.d_model),
80
- nn.ReLU(),
81
- nn.Linear(config.d_model, config.d_model),
82
- # nn.BatchNorm1d(config.d_model),
83
- nn.ReLU(),
84
- nn.Linear(config.d_model, config.d_model)])# nn.Linear(modality0_dim, self.hidden_size)
85
-
86
-
87
- self.modality2_embedding_projection = nn.ModuleList([nn.Linear(modality2_dim, config.d_model),
88
- # nn.BatchNorm1d(config.d_model),
89
- nn.ReLU(),
90
- nn.Linear(config.d_model, config.d_model),
91
- # nn.BatchNorm1d(config.d_model),
92
- nn.ReLU(),
93
- nn.Linear(config.d_model, config.d_model)])# nn.Linear(modality0_dim, self.hidden_size)
94
-
95
-
96
- ### Added for P3GPT - FINISH
97
-
98
- self.rope = config.attn_config['rope']
99
- self.rope_impl = None
100
- if self.rope:
101
- self.rope_impl = config.attn_config['rope_impl']
102
- self.rotary_embedding = gen_rotary_embedding(rope_head_dim=config.d_model // config.n_heads, rope_impl=self.rope_impl, rope_theta=config.attn_config['rope_theta'], rope_dail_config=config.attn_config['rope_dail_config'], rope_hf_config=config.attn_config['rope_hf_config'], max_seq_len=self.config.max_seq_len)
103
- if config.init_device != 'meta':
104
- log.info(f'We recommend using config.init_device="meta" with Composer + FSDP for faster initialization.')
105
- self.apply(self.param_init_fn)
106
- self.is_causal = not self.prefix_lm
107
- self._attn_bias_initialized = False
108
- self.attn_bias = None
109
- self.attn_bias_shape = attn_bias_shape(self.attn_impl, config.n_heads, config.max_seq_len, self.alibi, prefix_lm=self.prefix_lm, causal=self.is_causal, use_sequence_id=self.attn_uses_sequence_id)
110
- if config.no_bias:
111
- for module in self.modules():
112
- if hasattr(module, 'bias') and isinstance(module.bias, nn.Parameter):
113
- log.info(f'Removing bias from module={module!r}.')
114
- module.register_parameter('bias', None)
115
- if hasattr(module, 'use_bias'):
116
- log.info(f'Setting use_bias=False for module={module!r}.')
117
- module.use_bias = False
118
- log.debug(self)
119
- log.debug(f"Using {self.config.init_config['name']} initialization.")
120
-
121
- # Initialize weights and apply final processing
122
- # self.post_init()
123
-
124
-
125
- def get_input_embeddings(self):
126
- return self.wte
127
-
128
-
129
- def set_input_embeddings(self, new_embeddings):
130
- # self.wte = new_embeddings
131
- self.wte.weight = new_embeddings
132
-
133
-
134
- def forward(self, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None,
135
- attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None,
136
- sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None,
137
- output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None,
138
- inputs_embeds: Optional[torch.Tensor]=None, modality0_emb: Optional[bool] = None,
139
- modality0_token_id: Optional[bool] = None, modality1_emb: Optional[bool] = None, modality1_token_id: Optional[bool] = None,
140
- modality2_emb: Optional[bool] = None, modality2_token_id: Optional[bool] = None, modality3_emb: Optional[bool] = None,
141
- modality3_token_id: Optional[bool] = None,) -> BaseModelOutputWithPast:
142
-
143
- return_dict = return_dict if return_dict is not None else self.config.return_dict
144
- use_cache = use_cache if use_cache is not None else self.config.use_cache
145
- if attention_mask is not None:
146
- attention_mask = attention_mask.bool()
147
- if prefix_mask is not None:
148
- prefix_mask = prefix_mask.bool()
149
- if not return_dict:
150
- raise NotImplementedError('return_dict False is not implemented yet for MPT')
151
- if output_attentions:
152
- if self.attn_impl != 'torch':
153
- raise NotImplementedError('output_attentions is not implemented for MPT when using attn_impl `flash` or `triton`.')
154
- if self.training and attention_mask is not None and (attention_mask[:, 0].sum() != attention_mask.shape[0]):
155
- raise NotImplementedError('MPT does not support training with left padding.')
156
- if self.prefix_lm and prefix_mask is None:
157
- raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.')
158
- if self.training:
159
- if self.attn_uses_sequence_id and sequence_id is None:
160
- raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.')
161
- elif self.attn_uses_sequence_id is False and sequence_id is not None:
162
- warnings.warn('MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.')
163
-
164
- ### ADDED FOR P3 - START
165
-
166
- if modality0_emb is not None:
167
- modality0_emb = torch.tensor(modality0_emb, dtype=torch.bfloat16)
168
- hidden_states = self.wte.weight.detach()
169
-
170
- for layer in self.modality0_embedding_projection:
171
- modality0_emb = layer(modality0_emb)
172
- proj_modality0_emb = modality0_emb
173
-
174
- # Replace the original embedding for the custom token with the custom embedding
175
- hidden_states[modality0_token_id, :] = torch.mean(torch.squeeze(proj_modality0_emb, 1), dim=0)
176
- self.set_input_embeddings(torch.nn.Parameter(hidden_states))
177
-
178
- if modality1_emb is not None:
179
- modality1_emb = torch.tensor(modality1_emb, dtype=torch.bfloat16)
180
- hidden_states = self.wte.weight.detach()
181
-
182
- for layer in self.modality0_embedding_projection:
183
- modality1_emb = layer(modality1_emb)
184
- proj_modality1_emb = modality1_emb
185
-
186
- # Replace the original embedding for the custom token with the custom embedding
187
- hidden_states[modality1_token_id, :] = torch.mean(torch.squeeze(proj_modality1_emb, 1), dim=0)
188
- self.set_input_embeddings(torch.nn.Parameter(hidden_states))
189
-
190
- if modality2_emb is not None:
191
- modality2_emb = torch.tensor(modality2_emb, dtype=torch.bfloat16)
192
- hidden_states = self.wte.weight.detach()
193
-
194
- for layer in self.modality2_embedding_projection:
195
- modality2_emb = layer(modality2_emb)
196
- proj_modality2_emb = modality2_emb
197
-
198
- # Replace the original embedding for the custom token with the custom embedding
199
- hidden_states[modality2_token_id, :] = torch.mean(torch.squeeze(proj_modality2_emb, 1), dim=0)
200
- self.set_input_embeddings(torch.nn.Parameter(hidden_states))
201
-
202
- if modality3_emb is not None:
203
- modality3_emb = torch.tensor(modality3_emb, dtype=torch.bfloat16)
204
- hidden_states = self.wte.weight.detach()
205
-
206
- for layer in self.modality2_embedding_projection:
207
- modality3_emb = layer(modality3_emb)
208
- proj_modality3_emb = modality3_emb
209
-
210
- # Replace the original embedding for the custom token with the custom embedding
211
- hidden_states[modality3_token_id, :] = torch.mean(torch.squeeze(proj_modality3_emb, 1), dim=0)
212
- self.set_input_embeddings(torch.nn.Parameter(hidden_states))
213
-
214
- ### ADDED FOR P3 - END
215
-
216
- if input_ids is not None and inputs_embeds is not None:
217
- raise ValueError('You cannot specify both input_ids and inputs_embeds.')
218
- elif input_ids is not None:
219
- bsz = input_ids.size(0)
220
- S = input_ids.size(1)
221
- x = self.wte(input_ids)
222
- input_device = input_ids.device
223
- elif inputs_embeds is not None:
224
- bsz = inputs_embeds.size(0)
225
- S = inputs_embeds.size(1)
226
- x = inputs_embeds
227
- input_device = inputs_embeds.device
228
- else:
229
- raise ValueError('You must specify input_ids or inputs_embeds')
230
- assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
231
- rotary_emb_w_meta_info = None
232
- past_position = 0
233
- if past_key_values is not None:
234
- if len(past_key_values) != self.config.n_layers:
235
- raise ValueError(f'past_key_values must provide a past_key_value for each attention ' + f'layer in the network (len(past_key_values)={len(past_key_values)!r}; self.config.n_layers={self.config.n_layers!r}).')
236
- past_position = past_key_values[0][0].size(1)
237
- if self.attn_impl == 'torch':
238
- past_position = past_key_values[0][0].size(3)
239
- if self.learned_pos_emb or self.rope:
240
- if self.learned_pos_emb and S + past_position > self.config.max_seq_len:
241
- raise ValueError(f'Cannot forward input with past sequence length {past_position} and current sequence length ' + f'{S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.')
242
- if self.learned_pos_emb or (self.rope and self.rope_impl == 'hf'):
243
- pos = torch.arange(past_position, S + past_position, dtype=torch.long, device=input_device).unsqueeze(0)
244
- if attention_mask is not None:
245
- pos = torch.clamp(pos - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[:, past_position:], min=0)
246
- if self.learned_pos_emb:
247
- x = x + self.wpe(pos)
248
- elif self.rope and self.rope_impl == 'hf':
249
- rotary_emb_w_meta_info = {'impl': self.rope_impl, 'rotary_emb': self.rotary_embedding, 'offset_info': pos, 'seq_len': S + past_position}
250
- elif self.rope and self.rope_impl == 'dail':
251
- rotary_emb_w_meta_info = {'impl': self.rope_impl, 'rotary_emb': self.rotary_embedding, 'offset_info': past_position, 'seq_len': S + past_position}
252
- if self.embedding_fraction == 1:
253
- x = self.emb_drop(x)
254
- else:
255
- x_shrunk = x * self.embedding_fraction + x.detach() * (1 - self.embedding_fraction)
256
- assert isinstance(self.emb_drop, nn.Module)
257
- x = self.emb_drop(x_shrunk)
258
- (attn_bias, attention_mask) = self._attn_bias(device=x.device, dtype=torch.float32, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id)
259
- attention_mask_in_length = gen_attention_mask_in_length(sequence_id=sequence_id, S=S, attn_uses_sequence_id=self.attn_uses_sequence_id, attn_impl=self.attn_impl, attention_mask=attention_mask)
260
- alibi_slopes = None
261
- if self.alibi and self.attn_impl == 'flash':
262
- alibi_slopes = gen_slopes(n_heads=self.config.n_heads, alibi_bias_max=self.alibi_bias_max, device=x.device, return_1d=True)
263
-
264
- presents = () if use_cache else None
265
- if use_cache and past_key_values is None:
266
- past_key_values = [() for _ in range(self.config.n_layers)]
267
- all_hidden_states = () if output_hidden_states else None
268
- all_self_attns = () if output_attentions else None
269
- flash_attn_padding_info = {}
270
- if self.attn_impl == 'flash':
271
- flash_attn_padding_info = gen_flash_attn_padding_info(bsz, S, past_position, x.device, attention_mask_in_length, attention_mask)
272
- for (b_idx, block) in enumerate(self.blocks):
273
- if output_hidden_states:
274
- assert all_hidden_states is not None
275
- all_hidden_states = all_hidden_states + (x,)
276
- past_key_value = past_key_values[b_idx] if past_key_values is not None else None
277
- (x, attn_weights, present) = block(x, past_key_value=past_key_value, attn_bias=attn_bias, rotary_emb_w_meta_info=rotary_emb_w_meta_info, attention_mask=attention_mask, is_causal=self.is_causal, output_attentions=bool(output_attentions), alibi_slopes=alibi_slopes, flash_attn_padding_info=flash_attn_padding_info)
278
- if presents is not None:
279
- presents += (present,)
280
- if output_attentions:
281
- assert all_self_attns is not None
282
- all_self_attns = all_self_attns + (attn_weights,)
283
- x = self.norm_f(x)
284
- if output_hidden_states:
285
- assert all_hidden_states is not None
286
- all_hidden_states = all_hidden_states + (x,)
287
- return BaseModelOutputWithPast(last_hidden_state=x, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attns)
288
-
289
-
290
- class Custom_MPTForCausalLM(MPTForCausalLM):
291
-
292
- def __init__(self, config: MPTConfig):
293
- super().__init__(config)
294
- # log.info(f'Instantiating an MPTForCausalLM model from {__file__}')
295
- self.transformer: MPTModel = Custom_MptModel(config)
296
- self.lm_head = None
297
- if not config.tie_word_embeddings:
298
- self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False, device=config.init_device)
299
- self.lm_head._fsdp_wrap = True
300
- for child in self.transformer.children():
301
- if isinstance(child, torch.nn.ModuleList):
302
- continue
303
- if isinstance(child, torch.nn.Module):
304
- child._fsdp_wrap = True
305
- self.logit_scale = None
306
- if config.logit_scale is not None:
307
- logit_scale = config.logit_scale
308
- if isinstance(logit_scale, str):
309
- if logit_scale == 'inv_sqrt_d_model':
310
- logit_scale = 1 / math.sqrt(config.d_model)
311
- else:
312
- raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
313
- self.logit_scale = logit_scale
314
-
315
- def forward(self, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None,
316
- attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None,
317
- sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None,
318
- return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None,
319
- use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.FloatTensor]=None,
320
- modality0_emb: Optional[bool] = None, modality0_token_id: Optional[bool] = None,
321
- modality1_emb: Optional[bool] = None, modality1_token_id: Optional[bool] = None,
322
- modality2_emb: Optional[bool] = None, modality2_token_id: Optional[bool] = None,
323
- modality3_emb: Optional[bool] = None, modality3_token_id: Optional[bool] = None) -> CausalLMOutputWithPast:
324
- return_dict = return_dict if return_dict is not None else self.config.return_dict
325
- use_cache = use_cache if use_cache is not None else self.config.use_cache
326
- outputs = self.transformer(
327
- input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask,
328
- sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states,
329
- use_cache=use_cache, inputs_embeds=inputs_embeds,
330
- modality0_emb=modality0_emb,
331
- modality0_token_id=modality0_token_id,
332
- modality1_emb=modality1_emb,
333
- modality1_token_id=modality1_token_id,
334
- modality2_emb=modality2_emb,
335
- modality2_token_id=modality2_token_id,
336
- modality3_emb=modality3_emb,
337
- modality3_token_id=modality3_token_id
338
- )
339
- if self.lm_head is not None:
340
- logits = self.lm_head(outputs.last_hidden_state)
341
- else:
342
- out = outputs.last_hidden_state
343
- out = out.to(self.transformer.wte.weight.device)
344
- logits = self.transformer.wte(out, True)
345
- if self.logit_scale is not None:
346
- if self.logit_scale == 0:
347
- warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.')
348
- logits *= self.logit_scale
349
- loss = None
350
- if labels is not None:
351
- _labels = torch.roll(labels, shifts=-1)
352
- _labels[:, -1] = -100
353
- loss = F.cross_entropy(logits.view(-1, logits.size(-1)), _labels.to(logits.device).view(-1))
354
- return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions)