|
import torch |
|
import torch.nn as nn |
|
import re |
|
import math |
|
from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig |
|
|
|
|
|
def build_vision_tower(): |
|
vision_tower = 'openai/clip-vit-large-patch14-336' |
|
return CLIPVisionTower(vision_tower) |
|
|
|
class CLIPVisionTowerHD(nn.Module): |
|
def __init__(self, config, vision_select_layer=-2): |
|
super().__init__() |
|
|
|
self.is_loaded = False |
|
|
|
|
|
self.vis_config = config |
|
self.select_layer = vision_select_layer |
|
self.select_feature = 'patch' |
|
self.load_model() |
|
|
|
def load_model(self): |
|
|
|
self.vision_tower = CLIPVisionModel(CLIPVisionConfig(**self.vis_config)) |
|
self.vision_tower.requires_grad_(False) |
|
|
|
self.is_loaded = True |
|
|
|
def resize_pos(self): |
|
print ('Dummy Resized') |
|
|
|
def feature_select(self, image_forward_outs): |
|
image_features = image_forward_outs.hidden_states[self.select_layer] |
|
if self.select_feature == 'patch': |
|
image_features = image_features[:, 1:] |
|
elif self.select_feature == 'cls_patch': |
|
image_features = image_features |
|
else: |
|
raise ValueError(f'Unexpected select feature: {self.select_feature}') |
|
return image_features |
|
|
|
def forward(self, images, glb_GN, sub_GN): |
|
if not self.is_loaded: |
|
self.load_model() |
|
assert type(images) is list |
|
shapes = [] |
|
input_imgs = [] |
|
for img in images: |
|
_, C, H, W = img.shape |
|
shapes.append([H//336, W//336]) |
|
sub_img = img.reshape(1,3,H//336,336,W//336,336).permute(0,2,4,1,3,5).reshape(-1,3,336,336).contiguous() |
|
glb_img = torch.nn.functional.interpolate(img.float(), size=(336,336), mode='bicubic',).to(sub_img.dtype) |
|
input_imgs.append(glb_img) |
|
input_imgs.append(sub_img) |
|
input_imgs = torch.cat(input_imgs, dim=0) |
|
|
|
image_forward_outs = self.vision_tower(input_imgs.to(device=self.device, dtype=self.dtype), output_hidden_states=True) |
|
image_features = self.feature_select(image_forward_outs).to(input_imgs.dtype) |
|
_, N, C = image_features.shape |
|
H = int(math.sqrt(N)) |
|
assert N == 24 ** 2 |
|
|
|
output_imgs = [] |
|
output_len = [] |
|
for [h, w] in shapes: |
|
B_ = h*w |
|
glb_img = image_features[:1] |
|
glb_img = glb_img.reshape(1,H,H,C).reshape(1,H//2,2,H//2,2,C).contiguous().permute(0,1,3,2,4,5).reshape(1,H//2,H//2,4*C).contiguous() |
|
temp_glb_GN = sub_GN.repeat(1, H//2, 1, 1) |
|
glb_img = torch.cat([glb_img, temp_glb_GN], dim=2).reshape(1,-1,4*C) |
|
|
|
sub_img = image_features[1:1+B_] |
|
sub_img = sub_img.reshape(B_,H,H,C).reshape(B_,H//2,2,H//2,2,C).contiguous().permute(0,1,3,2,4,5).reshape(B_,-1,4*C).contiguous() |
|
sub_img = sub_img.reshape(1, h, w, 12, 12, -1).permute(0,1,3,2,4,5).reshape(1,h*12,w*12,4*C) |
|
temp_sub_GN = sub_GN.repeat(1, h*12, 1, 1) |
|
sub_img = torch.cat([sub_img, temp_sub_GN], dim=2).reshape(1,-1,4*C) |
|
|
|
output_imgs.append(torch.cat([glb_img, glb_GN, sub_img], dim=1)) |
|
temp_len = int((h*w+1)*144 + 1 + (h+1)*12) |
|
assert temp_len == output_imgs[-1].shape[1] |
|
output_len.append(temp_len) |
|
|
|
image_features = image_features[1+h*w:] |
|
|
|
new_output_imgs = [] |
|
max_len = max(output_len) |
|
for img_feat in output_imgs: |
|
if img_feat.shape[1] < max_len: |
|
pad_feat = torch.zeros(1, (max_len-img_feat.shape[1]), img_feat.shape[2]).to(img_feat.device) |
|
img_feat_padding = torch.cat([img_feat, pad_feat], dim=1) |
|
new_output_imgs.append(img_feat_padding) |
|
else: |
|
new_output_imgs.append(img_feat) |
|
|
|
output_imgs = torch.cat(new_output_imgs, dim=0) |
|
|
|
return output_imgs, output_len |
|
|
|
@property |
|
def dummy_feature(self): |
|
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) |
|
|
|
@property |
|
def dtype(self): |
|
return self.vision_tower.dtype |
|
|
|
@property |
|
def device(self): |
|
return self.vision_tower.device |
|
|
|
@property |
|
def config(self): |
|
if self.is_loaded: |
|
return self.vision_tower.config |
|
else: |
|
return self.cfg_only |
|
|
|
@property |
|
def num_features(self): |
|
return self.config.hidden_size |
|
|
|
@property |
|
def num_patches(self): |
|
return (self.config.image_size // self.config.patch_size) ** 2 |
|
|
|
|