metadata
language:
- or
license: apache-2.0
tags:
- automatic-speech-recognition
- generated_from_trainer
- hf-asr-leaderboard
- mozilla-foundation/common_voice_7_0
- or
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_7_0
model-index:
- name: XLS-R-300M - Odia
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 7
type: mozilla-foundation/common_voice_7_0
args: or
metrics:
- name: Test WER
type: wer
value: 97.91
- name: Test CER
type: cer
value: 247.09
wav2vec2-large-xls-r-300m-odia
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - OR dataset. It achieves the following results on the evaluation set:
python eval.py --model_id ./ --dataset mozilla-foundation/common_voice_7_0 --config as --split test --log_outputs
- WER: 1.0921052631578947
- CER: 2.5547945205479454
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
Training machine details
- Platform: Linux-5.11.0-37-generic-x86_64-with-glibc2.10
- CPU cores: 60
- Python version: 3.8.8
- PyTorch version: 1.10.1+cu102
- GPU is visible: True
- Transformers version: 4.16.0.dev0
- Datasets version: 1.17.1.dev0
- soundfile version: 0.10.3
Training script
python run_speech_recognition_ctc.py \
--dataset_name="mozilla-foundation/common_voice_7_0" \
--model_name_or_path="facebook/wav2vec2-xls-r-300m" \
--dataset_config_name="or" \
--output_dir="./wav2vec2-large-xls-r-300m-odia" \
--overwrite_output_dir \
--num_train_epochs="120" \
--per_device_train_batch_size="16" \
--per_device_eval_batch_size="16" \
--gradient_accumulation_steps="2" \
--learning_rate="7.5e-5" \
--warmup_steps="500" \
--length_column_name="input_length" \
--evaluation_strategy="steps" \
--text_column_name="sentence" \
--chars_to_ignore , ? . ! \- \; \: \" β % β β οΏ½ β \β β¦ \β \' \β \β \
--save_steps="500" \
--eval_steps="500" \
--logging_steps="100" \
--layerdrop="0.0" \
--activation_dropout="0.1" \
--save_total_limit="3" \
--freeze_feature_encoder \
--feat_proj_dropout="0.0" \
--mask_time_prob="0.75" \
--mask_time_length="10" \
--mask_feature_prob="0.25" \
--mask_feature_length="64" \
--gradient_checkpointing \
--use_auth_token \
--fp16 \
--group_by_length \
--do_train --do_eval \
--push_to_hub
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 120.0
- mixed_precision_training: Native AMP
Training results
eval_loss | eval_wer | eval_runtime | eval_samples_per_second | eval_steps_per_second | epoch | |
---|---|---|---|---|---|---|
0 | 3.35224 | 0.998972 | 5.0475 | 22.189 | 1.387 | 29.41 |
1 | 1.33679 | 0.938335 | 5.0633 | 22.12 | 1.382 | 58.82 |
2 | 0.737202 | 0.957862 | 5.0913 | 21.998 | 1.375 | 88.24 |
3 | 0.658212 | 0.96814 | 5.0953 | 21.981 | 1.374 | 117.65 |
4 | 0.658 | 0.9712 | 5.0953 | 22.115 | 1.382 | 120 |
Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0