metadata
language:
- hi
license: apache-2.0
tags:
- automatic-speech-recognition
- generated_from_trainer
- hf-asr-leaderboard
- hi
- model_for_talk
- mozilla-foundation/common_voice_7_0
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_7_0
model-index:
- name: XLS-R-300M - Hindi
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 7
type: mozilla-foundation/common_voice_7_0
args: hi
metrics:
- name: Test WER
type: wer
value: 100
- name: Test CER
type: cer
value: 92.98
wav2vec2-large-xls-r-300m-hindi
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HI dataset. It achieves the following results on the evaluation set:
- Loss: 0.5414
- Wer: 1.0194
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 100.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
4.6095 | 3.38 | 500 | 4.5881 | 0.9999 |
3.3396 | 6.76 | 1000 | 3.3301 | 1.0001 |
2.0061 | 10.14 | 1500 | 1.2096 | 1.0063 |
1.523 | 13.51 | 2000 | 0.7836 | 1.0051 |
1.3868 | 16.89 | 2500 | 0.6837 | 1.0080 |
1.2807 | 20.27 | 3000 | 0.6568 | 1.0112 |
1.231 | 23.65 | 3500 | 0.6120 | 1.0105 |
1.1673 | 27.03 | 4000 | 0.5972 | 1.0089 |
1.1416 | 30.41 | 4500 | 0.5780 | 1.0132 |
1.0738 | 33.78 | 5000 | 0.5806 | 1.0123 |
1.0771 | 37.16 | 5500 | 0.5586 | 1.0067 |
1.0287 | 40.54 | 6000 | 0.5464 | 1.0058 |
1.0106 | 43.92 | 6500 | 0.5407 | 1.0062 |
0.9538 | 47.3 | 7000 | 0.5334 | 1.0089 |
0.9607 | 50.68 | 7500 | 0.5395 | 1.0110 |
0.9108 | 54.05 | 8000 | 0.5502 | 1.0137 |
0.9252 | 57.43 | 8500 | 0.5498 | 1.0062 |
0.8943 | 60.81 | 9000 | 0.5448 | 1.0158 |
0.8728 | 64.19 | 9500 | 0.5257 | 1.0113 |
0.8577 | 67.57 | 10000 | 0.5550 | 1.0178 |
0.8332 | 70.95 | 10500 | 0.5607 | 1.0166 |
0.8174 | 74.32 | 11000 | 0.5429 | 1.0145 |
0.8168 | 77.7 | 11500 | 0.5561 | 1.0116 |
0.7872 | 81.08 | 12000 | 0.5478 | 1.0164 |
0.7707 | 84.46 | 12500 | 0.5412 | 1.0216 |
0.7742 | 87.84 | 13000 | 0.5391 | 1.0207 |
0.7594 | 91.22 | 13500 | 0.5379 | 1.0208 |
0.7678 | 94.59 | 14000 | 0.5415 | 1.0198 |
0.7502 | 97.97 | 14500 | 0.5409 | 1.0191 |
Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0