|
--- |
|
language: |
|
- bas |
|
license: apache-2.0 |
|
tags: |
|
- automatic-speech-recognition |
|
- mozilla-foundation/common_voice_7_0 |
|
- generated_from_trainer |
|
- robust-speech-event |
|
datasets: |
|
- mozilla-foundation/common_voice_7_0 |
|
model-index: |
|
- name: XLS-R-300M - Basaa |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice 7 |
|
type: mozilla-foundation/common_voice_7_0 |
|
args: bas |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 104.08 |
|
- name: Test CER |
|
type: cer |
|
value: 228.48 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-large-xls-r-300m-basaa |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - BAS dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5975 |
|
- Wer: 0.4981 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 7e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 200.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:----:|:---------------:|:------:| |
|
| 2.9287 | 15.62 | 500 | 2.8774 | 1.0 | |
|
| 1.1182 | 31.25 | 1000 | 0.6248 | 0.7131 | |
|
| 0.8329 | 46.88 | 1500 | 0.5573 | 0.5792 | |
|
| 0.7109 | 62.5 | 2000 | 0.5420 | 0.5683 | |
|
| 0.6295 | 78.12 | 2500 | 0.5166 | 0.5395 | |
|
| 0.5715 | 93.75 | 3000 | 0.5487 | 0.5629 | |
|
| 0.5016 | 109.38 | 3500 | 0.5370 | 0.5471 | |
|
| 0.4661 | 125.0 | 4000 | 0.5621 | 0.5395 | |
|
| 0.423 | 140.62 | 4500 | 0.5658 | 0.5248 | |
|
| 0.3793 | 156.25 | 5000 | 0.5921 | 0.4981 | |
|
| 0.3651 | 171.88 | 5500 | 0.5987 | 0.4888 | |
|
| 0.3351 | 187.5 | 6000 | 0.6017 | 0.4948 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.16.0.dev0 |
|
- Pytorch 1.10.1+cu102 |
|
- Datasets 1.17.1.dev0 |
|
- Tokenizers 0.11.0 |
|
|