Ring-mini-2.0 / configuration_bailing_moe_v2.py
zhanghanxiao's picture
Upload configuration_bailing_moe_v2.py with huggingface_hub
ecc6c8f verified
"""Bailing MoE V2 model configuration"""
from transformers.configuration_utils import PretrainedConfig
class BailingMoeV2Config(PretrainedConfig):
def __init__(
self,
vocab_size=157184,
hidden_size=2048,
intermediate_size=5120,
num_hidden_layers=20,
num_attention_heads=16,
num_key_value_heads=4,
hidden_act="silu",
use_qkv_bias=False, # bailing only
use_bias=False, # bailing only
rms_norm_eps=1e-06,
tie_word_embeddings=False, # PretrainedConfig key, here change default value.
embedding_dropout=0.0,
attention_dropout=0.0,
output_dropout=0.0,
initializer_range=0.02,
max_position_embeddings=32768,
rope_theta=600000.0,
use_cache=True,
max_window_layers=20,
rope_scaling=None,
pad_token_id=156892,
eos_token_id=156892,
num_experts=256,
num_shared_experts=1,
num_experts_per_tok=8,
n_group=8,
topk_group=4,
moe_intermediate_size=512,
first_k_dense_replace=1,
head_dim=128,
output_router_logits=False,
use_qk_norm=True,
num_nextn_predict_layers=0,
mtp_loss_scaling_factor=0,
moe_router_enable_expert_bias=True,
routed_scaling_factor=1.0,
**kwargs,
):
self.num_hidden_layers = num_hidden_layers
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.use_qkv_bias = use_qkv_bias
self.use_bias = use_bias
self.rms_norm_eps = rms_norm_eps
self.embedding_dropout = embedding_dropout
self.attention_dropout = attention_dropout
self.output_dropout = output_dropout
self.num_nextn_predict_layers = num_nextn_predict_layers
self.mtp_loss_scaling_factor = mtp_loss_scaling_factor
self.initializer_range = initializer_range
self.max_position_embeddings = max_position_embeddings
self.rope_theta = rope_theta
self.use_cache = use_cache
self.max_window_layers = max_window_layers
self.head_dim = head_dim or self.hidden_size // self.num_attention_heads
self.rope_scaling = rope_scaling
self.use_qk_norm = use_qk_norm
self.moe_router_enable_expert_bias = moe_router_enable_expert_bias
self.routed_scaling_factor = routed_scaling_factor
# MoE configs
self.num_experts = num_experts
self.num_shared_experts = num_shared_experts
self.num_experts_per_tok = num_experts_per_tok
self.n_group = n_group
self.topk_group = topk_group
self.moe_intermediate_size = moe_intermediate_size
self.first_k_dense_replace = first_k_dense_replace
self.output_router_logits = output_router_logits
super().__init__(pad_token_id=pad_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs)