metadata
base_model: stabilityai/stable-diffusion-xl-base-1.0
datasets:
- imomayiz/morocco-img
library_name: diffusers
tags:
- art
pipeline_tag: text-to-image
SDXL LoRA DreamBooth - imomayiz/moroccan_sdxl_lora
Model description
These are LoRA weights of sdxl-base-1.0 finetuned on modern moroccan cities images.
The weights were trained using DreamBooth.
VAE used for training: madebyollin/sdxl-vae-fp16-fix.
Trigger words
You should use "moroccan city" to trigger the image generation.
Download model
Weights for this model are available here.
Dataset
The training images can be found here.
How to use the model
import torch
from diffusers import DiffusionPipeline, AutoencoderKL
repo_id = "imomayiz/moroccan_sdxl_lora"
# load lora weights and pipeline
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
vae=vae,
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True
)
pipe.load_lora_weights(repo_id)
_ = pipe.to("cuda")
prompt = "a photo of a modern moroccan city"
# generate the image
image = pipe(prompt=prompt, num_inference_steps=30).images[0]
image