|
--- |
|
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct |
|
library_name: peft |
|
license: llama3.1 |
|
tags: |
|
- unsloth |
|
- generated_from_trainer |
|
model-index: |
|
- name: profile |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# profile |
|
|
|
This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2265 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.02 |
|
- num_epochs: 0.6 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 1.4834 | 0.0130 | 2 | 1.3970 | |
|
| 1.2584 | 0.0259 | 4 | 1.3753 | |
|
| 1.2986 | 0.0389 | 6 | 1.3372 | |
|
| 1.3462 | 0.0518 | 8 | 1.3056 | |
|
| 1.2461 | 0.0648 | 10 | 1.2892 | |
|
| 1.263 | 0.0777 | 12 | 1.2828 | |
|
| 1.2749 | 0.0907 | 14 | 1.2781 | |
|
| 1.2803 | 0.1036 | 16 | 1.2702 | |
|
| 1.1367 | 0.1166 | 18 | 1.2617 | |
|
| 1.3358 | 0.1296 | 20 | 1.2531 | |
|
| 1.1804 | 0.1425 | 22 | 1.2464 | |
|
| 1.1444 | 0.1555 | 24 | 1.2440 | |
|
| 1.1772 | 0.1684 | 26 | 1.2425 | |
|
| 1.2582 | 0.1814 | 28 | 1.2404 | |
|
| 1.1991 | 0.1943 | 30 | 1.2378 | |
|
| 1.156 | 0.2073 | 32 | 1.2367 | |
|
| 1.2827 | 0.2202 | 34 | 1.2361 | |
|
| 1.151 | 0.2332 | 36 | 1.2355 | |
|
| 1.178 | 0.2462 | 38 | 1.2349 | |
|
| 1.2604 | 0.2591 | 40 | 1.2337 | |
|
| 1.1988 | 0.2721 | 42 | 1.2322 | |
|
| 1.1819 | 0.2850 | 44 | 1.2307 | |
|
| 1.123 | 0.2980 | 46 | 1.2301 | |
|
| 1.1661 | 0.3109 | 48 | 1.2304 | |
|
| 1.2776 | 0.3239 | 50 | 1.2306 | |
|
| 1.2437 | 0.3368 | 52 | 1.2303 | |
|
| 1.1617 | 0.3498 | 54 | 1.2291 | |
|
| 1.2691 | 0.3628 | 56 | 1.2280 | |
|
| 1.1998 | 0.3757 | 58 | 1.2275 | |
|
| 1.1656 | 0.3887 | 60 | 1.2276 | |
|
| 1.2549 | 0.4016 | 62 | 1.2275 | |
|
| 1.3261 | 0.4146 | 64 | 1.2279 | |
|
| 1.2188 | 0.4275 | 66 | 1.2279 | |
|
| 1.2544 | 0.4405 | 68 | 1.2278 | |
|
| 1.276 | 0.4534 | 70 | 1.2273 | |
|
| 1.1895 | 0.4664 | 72 | 1.2269 | |
|
| 1.2274 | 0.4794 | 74 | 1.2268 | |
|
| 1.1861 | 0.4923 | 76 | 1.2267 | |
|
| 1.262 | 0.5053 | 78 | 1.2265 | |
|
| 1.3122 | 0.5182 | 80 | 1.2265 | |
|
| 1.3043 | 0.5312 | 82 | 1.2266 | |
|
| 1.2069 | 0.5441 | 84 | 1.2266 | |
|
| 1.2088 | 0.5571 | 86 | 1.2266 | |
|
| 1.1754 | 0.5700 | 88 | 1.2265 | |
|
| 1.1704 | 0.5830 | 90 | 1.2266 | |
|
| 1.3636 | 0.5960 | 92 | 1.2265 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.12.0 |
|
- Transformers 4.44.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |