|
import pickle |
|
|
|
import torch |
|
import torch.distributed as dist |
|
|
|
|
|
class Comm(object): |
|
def __init__(self, local_rank=0): |
|
self.local_rank = 0 |
|
|
|
@property |
|
def world_size(self): |
|
if not dist.is_available(): |
|
return 1 |
|
if not dist.is_initialized(): |
|
return 1 |
|
return dist.get_world_size() |
|
|
|
@property |
|
def rank(self): |
|
if not dist.is_available(): |
|
return 0 |
|
if not dist.is_initialized(): |
|
return 0 |
|
return dist.get_rank() |
|
|
|
@property |
|
def local_rank(self): |
|
if not dist.is_available(): |
|
return 0 |
|
if not dist.is_initialized(): |
|
return 0 |
|
return self._local_rank |
|
|
|
@local_rank.setter |
|
def local_rank(self, value): |
|
if not dist.is_available(): |
|
self._local_rank = 0 |
|
if not dist.is_initialized(): |
|
self._local_rank = 0 |
|
self._local_rank = value |
|
|
|
@property |
|
def head(self): |
|
return 'Rank[{}/{}]'.format(self.rank, self.world_size) |
|
|
|
def is_main_process(self): |
|
return self.rank == 0 |
|
|
|
def synchronize(self): |
|
""" |
|
Helper function to synchronize (barrier) among all processes when |
|
using distributed training |
|
""" |
|
if self.world_size == 1: |
|
return |
|
dist.barrier() |
|
|
|
|
|
comm = Comm() |
|
|
|
|
|
def all_gather(data): |
|
""" |
|
Run all_gather on arbitrary picklable data (not necessarily tensors) |
|
Args: |
|
data: any picklable object |
|
Returns: |
|
list[data]: list of data gathered from each rank |
|
""" |
|
world_size = comm.world_size |
|
if world_size == 1: |
|
return [data] |
|
|
|
|
|
buffer = pickle.dumps(data) |
|
storage = torch.ByteStorage.from_buffer(buffer) |
|
tensor = torch.ByteTensor(storage).to("cuda") |
|
|
|
|
|
local_size = torch.LongTensor([tensor.numel()]).to("cuda") |
|
size_list = [torch.LongTensor([0]).to("cuda") for _ in range(world_size)] |
|
dist.all_gather(size_list, local_size) |
|
size_list = [int(size.item()) for size in size_list] |
|
max_size = max(size_list) |
|
|
|
|
|
|
|
|
|
tensor_list = [] |
|
for _ in size_list: |
|
tensor_list.append(torch.ByteTensor(size=(max_size,)).to("cuda")) |
|
if local_size != max_size: |
|
padding = torch.ByteTensor(size=(max_size - local_size,)).to("cuda") |
|
tensor = torch.cat((tensor, padding), dim=0) |
|
dist.all_gather(tensor_list, tensor) |
|
|
|
data_list = [] |
|
for size, tensor in zip(size_list, tensor_list): |
|
buffer = tensor.cpu().numpy().tobytes()[:size] |
|
data_list.append(pickle.loads(buffer)) |
|
|
|
return data_list |
|
|
|
|
|
def reduce_dict(input_dict, average=True): |
|
""" |
|
Args: |
|
input_dict (dict): all the values will be reduced |
|
average (bool): whether to do average or sum |
|
Reduce the values in the dictionary from all processes so that process with rank |
|
0 has the averaged results. Returns a dict with the same fields as |
|
input_dict, after reduction. |
|
""" |
|
world_size = comm.world_size |
|
if world_size < 2: |
|
return input_dict |
|
with torch.no_grad(): |
|
names = [] |
|
values = [] |
|
|
|
for k in sorted(input_dict.keys()): |
|
names.append(k) |
|
values.append(input_dict[k]) |
|
values = torch.stack(values, dim=0) |
|
dist.reduce(values, dst=0) |
|
if dist.get_rank() == 0 and average: |
|
|
|
|
|
values /= world_size |
|
reduced_dict = {k: v for k, v in zip(names, values)} |
|
return reduced_dict |