ikala-ray's picture
Update README.md
ca0556b
metadata
tags:
  - clip
  - siglip
library_name: transformers
pipeline_tag: zero-shot-image-classification
license: apache-2.0
datasets:
  - webli

Model card for ViT-B-16-SigLIP-i18n-256

A SigLIP (Sigmoid loss for Language-Image Pre-training) model trained on WebLI.

This model has been converted from Open-CLIP : timm/ViT-B-16-SigLIP-i18n-256 to huggingface CLIPVisionModel

from transformers import CLIPVisionModel, CLIPImageProcessor
from PIL import Image
import requests
url = "http://images.cocodataset.org/val2017/000000039769.jpg"

image = Image.open(requests.get(url, stream=True).raw)
inputs = image_processor(images=image, return_tensors="pt", padding=True)

vision_tower = CLIPVisionModel.from_pretrained('ikala/ViT-B-16-SigLIP-i18n-256-hf')
outputs = vision_tower(**inputs)

logits_per_image = outputs.pooler_output  # this is the image-text similarity score

There's still a slight difference where hf's CLIPVision model uses a [CLS] embedding as pool embedding while SigLIP uses global attention pooler to get the final latent feature.