|
--- |
|
license: afl-3.0 |
|
language: |
|
- zh |
|
--- |
|
|
|
# 中文词语分类 |
|
|
|
本模型对中文词语进行分类(多标签)。对于一个中文词语,其会被分为一个或多个类别,类别有如下: |
|
|
|
``` |
|
"1": "人文科学", |
|
"2": "农林渔畜", |
|
"3": "医学", |
|
"4": "城市信息大全", |
|
"5": "娱乐", |
|
"6": "工程与应用科学", |
|
"7": "生活", |
|
"8": "电子游戏", |
|
"9": "社会科学", |
|
"10": "自然科学", |
|
"11": "艺术", |
|
"12": "运动休闲" |
|
``` |
|
|
|
> 类别来源于[搜狗词汇的类型](https://pinyin.sogou.com/dict/cate/index/167) |
|
|
|
# 使用样例 |
|
|
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, BertForSequenceClassification |
|
|
|
model_path = "iioSnail/bert-base-chinese-word-classifier" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
model = BertForSequenceClassification.from_pretrained(model_path) |
|
|
|
words = ["2型糖尿病", "太古里", "跑跑卡丁车", "河豚"] |
|
inputs = tokenizer(words, return_tensors='pt', padding=True) |
|
outputs = model(**inputs).logits |
|
outputs = outputs.sigmoid() |
|
preds = outputs > 0.5 |
|
for i, pred in enumerate(preds): |
|
pred = torch.argwhere(pred).view(-1) |
|
labels = [model.config.id2label[int(id)] for id in pred] |
|
print(words[i], ":", labels) |
|
``` |
|
|
|
输出: |
|
|
|
``` |
|
2型糖尿病 : ['医学'] |
|
太古里 : ['城市信息大全'] |
|
跑跑卡丁车 : ['电子游戏'] |
|
河豚 : ['人文科学', '娱乐', '电子游戏', '自然科学'] |
|
``` |
|
|