Training in progress, step 300
Browse files
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 967102601
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3659cbd57caabfa6834081314e1044f720d4f82db5a36a341158bdc9fc0cf4f2
|
3 |
size 967102601
|
runs/Dec20_18-49-20_129-146-32-172/events.out.tfevents.1671562165.129-146-32-172.139059.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1538b38213e587df8d9b211f4b2848555784411095be34e9210a0d863fdeae37
|
3 |
+
size 10046
|
whisper_small_ps_augmented.py
CHANGED
@@ -101,7 +101,7 @@ def augment_dataset(batch):
|
|
101 |
|
102 |
|
103 |
print('Augment train set:')
|
104 |
-
fleurs['train'] = fleurs['train'].map(augment_dataset, num_proc=
|
105 |
|
106 |
"""We can apply the data preparation function to all of our training examples using dataset's `.map` method. The argument `num_proc` specifies how many CPU cores to use. Setting `num_proc` > 1 will enable multiprocessing. If the `.map` method hangs with multiprocessing, set `num_proc=1` and process the dataset sequentially."""
|
107 |
|
@@ -137,7 +137,7 @@ def prepare_dataset(batch):
|
|
137 |
|
138 |
print('Extract features and normalize data:')
|
139 |
fleurs = fleurs.map(
|
140 |
-
prepare_dataset, remove_columns=fleurs.column_names['train'], num_proc=
|
141 |
|
142 |
"""Finally, we filter any training data with audio samples longer than 30s. These samples would otherwise be truncated by the Whisper feature-extractor which could affect the stability of training. We define a function that returns `True` for samples that are less than 30s, and `False` for those that are longer:"""
|
143 |
|
@@ -272,7 +272,7 @@ training_args = Seq2SeqTrainingArguments(
|
|
272 |
greater_is_better=False,
|
273 |
push_to_hub=True,
|
274 |
#optim='adamw_bnb_8bit', # 'adamw_bnb_8bit',
|
275 |
-
overwrite_output_dir="
|
276 |
)
|
277 |
|
278 |
|
|
|
101 |
|
102 |
|
103 |
print('Augment train set:')
|
104 |
+
fleurs['train'] = fleurs['train'].map(augment_dataset, num_proc=10)
|
105 |
|
106 |
"""We can apply the data preparation function to all of our training examples using dataset's `.map` method. The argument `num_proc` specifies how many CPU cores to use. Setting `num_proc` > 1 will enable multiprocessing. If the `.map` method hangs with multiprocessing, set `num_proc=1` and process the dataset sequentially."""
|
107 |
|
|
|
137 |
|
138 |
print('Extract features and normalize data:')
|
139 |
fleurs = fleurs.map(
|
140 |
+
prepare_dataset, remove_columns=fleurs.column_names['train'], num_proc=10).with_format('torch')
|
141 |
|
142 |
"""Finally, we filter any training data with audio samples longer than 30s. These samples would otherwise be truncated by the Whisper feature-extractor which could affect the stability of training. We define a function that returns `True` for samples that are less than 30s, and `False` for those that are longer:"""
|
143 |
|
|
|
272 |
greater_is_better=False,
|
273 |
push_to_hub=True,
|
274 |
#optim='adamw_bnb_8bit', # 'adamw_bnb_8bit',
|
275 |
+
overwrite_output_dir="False"
|
276 |
)
|
277 |
|
278 |
|