metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- fleurs
metrics:
- wer
model-index:
- name: openai/whisper-base
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: fleurs
type: fleurs
config: ps_af
split: test
args: ps_af
metrics:
- name: Wer
type: wer
value: 66.03359564164649
openai/whisper-base
This model is a fine-tuned version of openai/whisper-base on the fleurs dataset. It achieves the following results on the evaluation set:
- Loss: 1.2300
- Wer: 66.0336
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 40
- training_steps: 300
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.5307 | 14.29 | 100 | 1.0195 | 66.1471 |
0.1225 | 28.57 | 200 | 1.1465 | 66.0185 |
0.0498 | 42.86 | 300 | 1.2300 | 66.0336 |
Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2