|
--- |
|
license: apache-2.0 |
|
tags: |
|
- google/fleurs |
|
- generated_from_trainer |
|
- automatic-speech-recognition |
|
- pashto |
|
- ps |
|
datasets: |
|
- fleurs |
|
metrics: |
|
- wer |
|
base_model: facebook/wav2vec2-xls-r-300m |
|
model-index: |
|
- name: facebook/wav2vec2-xls-r-300m |
|
results: |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: google/fleurs |
|
type: google/fleurs |
|
args: 'config: ps_af, split: test' |
|
metrics: |
|
- type: wer |
|
value: 51.59447476125512 |
|
name: Wer |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# facebook/wav2vec2-xls-r-300m |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the GOOGLE/FLEURS - PS_AF dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.9162 |
|
- Wer: 51.59 |
|
- Cer: 19.72 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 7.5e-07 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 1000 |
|
- training_steps: 6000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Cer | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:------:|:---------------:|:------:| |
|
| 5.0767 | 6.33 | 500 | 1.0 | 4.8783 | 1.0 | |
|
| 3.1156 | 12.66 | 1000 | 1.0 | 3.0990 | 1.0 | |
|
| 1.3506 | 18.99 | 1500 | 0.2889 | 1.1056 | 0.7031 | |
|
| 0.9997 | 25.32 | 2000 | 0.2301 | 0.9191 | 0.5944 | |
|
| 0.7838 | 31.65 | 2500 | 0.2152 | 0.8952 | 0.5556 | |
|
| 0.6665 | 37.97 | 3000 | 0.2017 | 0.8908 | 0.5252 | |
|
| 0.6265 | 44.3 | 3500 | 0.1954 | 0.9063 | 0.5133 | |
|
| 0.5935 | 50.63 | 4000 | 0.1969 | 0.9162 | 0.5156 | |
|
| 0.5174 | 56.96 | 4500 | 0.1972 | 0.9287 | 0.5140 | |
|
| 0.5462 | 63.29 | 5000 | 0.1974 | 0.9370 | 0.5138 | |
|
| 0.5564 | 69.62 | 5500 | 0.1977 | 0.9461 | 0.5148 | |
|
| 0.5252 | 75.95 | 6000 | 0.9505 | 0.5118 | 0.1969 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.0.dev0 |
|
- Pytorch 1.13.1+cu117 |
|
- Datasets 2.7.1.dev0 |
|
- Tokenizers 0.13.2 |
|
|