jquesada commited on
Commit
00827d4
1 Parent(s): bb15004

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+ # Model Card for Model ID
6
+
7
+ This model is a finetuning of other models based on mistralai/Mistral-7B-v0.1.
8
+
9
+ ## Model Details
10
+
11
+ ### Model Description
12
+
13
+ The model has been generated from the merging of the models [viethq188/LeoScorpius-7B-Chat-DPO](https://huggingface.co/viethq188/LeoScorpius-7B-Chat-DPO) and [GreenNode/GreenNodeLM-7B-v1olet](https://huggingface.co/GreenNode/GreenNodeLM-7B-v1olet) and a later finetuning with an Alpaca dataset [tatsu-lab/alpaca](https://huggingface.co/datasets/tatsu-lab/alpaca).
14
+
15
+ - **Developed by:** Ignos
16
+ - **Model type:** Mistral
17
+ - **License:** Apache-2.0
18
+
19
+ ## Uses
20
+
21
+ Model created for the comparison of behaviors and metrics with respect to the base model, as well as the comparison with other models that using the same base have been finetuning on other different datasets.
22
+
23
+ ## Bias, Risks, and Limitations
24
+
25
+ The same bias, risks and limitations from base models.
26
+
27
+ ## Training Details
28
+
29
+ ### Training Data
30
+
31
+ - [tatsu-lab/alpaca](https://huggingface.co/datasets/tatsu-lab/alpaca)
32
+
33
+ ### Training Procedure
34
+
35
+ - Training with QLoRA approach and merging with base model.
36
+
37
+ ### Results
38
+
39
+ - Huggingface evaluation pending
40
+
41
+ #### Summary
42
+
43
+ ## Technical Specifications
44
+
45
+ ### Model Architecture and Objective
46
+
47
+ - Models based on Mistral Architecture
48
+
49
+ ### Compute Infrastructure
50
+
51
+ - Training on RunPod
52
+
53
+ #### Hardware
54
+
55
+ - 4 x Nvidia RTX 4090
56
+ - 64 vCPU 503 GB RAM
57
+
58
+ #### Software
59
+
60
+ - Mergekit (main)
61
+ - Axolotl 0.3.0
62
+
63
+ ## Training procedure
64
+
65
+ The following `bitsandbytes` quantization config was used during training:
66
+ - quant_method: bitsandbytes
67
+ - load_in_8bit: False
68
+ - load_in_4bit: True
69
+ - llm_int8_threshold: 6.0
70
+ - llm_int8_skip_modules: None
71
+ - llm_int8_enable_fp32_cpu_offload: False
72
+ - llm_int8_has_fp16_weight: False
73
+ - bnb_4bit_quant_type: nf4
74
+ - bnb_4bit_use_double_quant: True
75
+ - bnb_4bit_compute_dtype: bfloat16
76
+
77
+ ### Framework versions
78
+
79
+ - PEFT 0.6.0