ighoshsubho
commited on
Commit
•
aeb3c43
1
Parent(s):
d03d4bb
Update README.md
Browse files
README.md
CHANGED
@@ -66,28 +66,61 @@ print(tokenizer.decode(outputs[0]))
|
|
66 |
Memory footprint: 269.03 MB
|
67 |
```
|
68 |
|
69 |
-
#### Quantized
|
70 |
-
* _Using 8-bit precision (int8)_
|
71 |
|
72 |
```python
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
```
|
92 |
|
93 |
# Limitations
|
|
|
66 |
Memory footprint: 269.03 MB
|
67 |
```
|
68 |
|
69 |
+
#### Quantized Version 2Bit (BitNet)
|
|
|
70 |
|
71 |
```python
|
72 |
+
model = "ighoshsubho/Bitnet-SmolLM-135M"
|
73 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
74 |
+
model = AutoModelForCausalLM.from_pretrained(model)
|
75 |
+
|
76 |
+
def activation_quant(x):
|
77 |
+
scale = 127.0 / x.abs().max(dim=-1, keepdim=True).values.clamp_(min=1e-5)
|
78 |
+
y = (x * scale).round().clamp_(-128, 127)
|
79 |
+
y = y / scale
|
80 |
+
return y
|
81 |
+
def weight_quant(w):
|
82 |
+
scale = 1.0 / w.abs().mean().clamp_(min=1e-5)
|
83 |
+
u = (w * scale).round().clamp_(-1, 1)
|
84 |
+
u = u / scale
|
85 |
+
return u
|
86 |
+
|
87 |
+
class BitLinear(nn.Linear):
|
88 |
+
def forward(self, x):
|
89 |
+
w = self.weight # a weight tensor with shape [d, k]
|
90 |
+
x = x.to(w.device)
|
91 |
+
RMSNorm = LlamaRMSNorm(x.shape[-1]).to(w.device)
|
92 |
+
x_norm = RMSNorm(x)
|
93 |
+
# A trick for implementing Straight−Through−Estimator (STE) using detach()
|
94 |
+
x_quant = x_norm + (activation_quant(x_norm) - x_norm).detach()
|
95 |
+
w_quant = w + (weight_quant(w) - w).detach()
|
96 |
+
y = F.linear(x_quant, w_quant)
|
97 |
+
return y
|
98 |
+
|
99 |
+
def convert_to_bitnet(model, copy_weights):
|
100 |
+
for name, module in model.named_modules():
|
101 |
+
# Replace linear layers with BitNet
|
102 |
+
if isinstance(module, LlamaSdpaAttention) or isinstance(module, LlamaMLP):
|
103 |
+
for child_name, child_module in module.named_children():
|
104 |
+
if isinstance(child_module, nn.Linear):
|
105 |
+
bitlinear = BitLinear(child_module.in_features, child_module.out_features, child_module.bias is not None).to(device="cuda:0")
|
106 |
+
if copy_weights:
|
107 |
+
bitlinear.weight = child_module.weight
|
108 |
+
if child_module.bias is not None:
|
109 |
+
bitlinear.bias = child_module.bias
|
110 |
+
setattr(module, child_name, bitlinear)
|
111 |
+
# Remove redundant input_layernorms
|
112 |
+
elif isinstance(module, LlamaDecoderLayer):
|
113 |
+
for child_name, child_module in module.named_children():
|
114 |
+
if isinstance(child_module, LlamaRMSNorm) and child_name == "input_layernorm":
|
115 |
+
setattr(module, child_name, nn.Identity().to(device="cuda:0"))
|
116 |
+
|
117 |
+
convert_to_bitnet(model, copy_weights=True)
|
118 |
+
model.to(device="cuda:0")
|
119 |
+
|
120 |
+
prompt = "Lovely works as a Senior Software Engineer at Axian Consulting. She has Master’s degree in Software Engineering. She is a full stack developer with 10 years of commercial experience working on web-based applications development, having wide knowledge on end"
|
121 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
122 |
+
generate_ids = model.generate(inputs.input_ids, max_length=200)
|
123 |
+
tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
124 |
```
|
125 |
|
126 |
# Limitations
|