ibrahimj's picture
End of training
fb37531 verified
metadata
base_model: nadsoft/hamsa_small
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - nadsoft/QASR-Speech-Resource
metrics:
  - wer
model-index:
  - name: hamsa-small-finetuned-qasr
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: nadsoft/QASR-Speech-Resource default
          type: nadsoft/QASR-Speech-Resource
        metrics:
          - name: Wer
            type: wer
            value: 22.587152044424403

hamsa-small-finetuned-qasr

This model is a fine-tuned version of nadsoft/hamsa_small on the nadsoft/QASR-Speech-Resource default dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2831
  • Wer: 22.5872

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 20000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3207 0.03 2500 0.3458 24.4928
0.3264 0.05 5000 0.3316 23.4082
0.3223 0.08 7500 0.3239 25.1050
0.3121 0.1 10000 0.3143 23.4557
0.3103 0.13 12500 0.3079 23.4296
0.3041 0.15 15000 0.3033 23.2113
0.3077 0.18 17500 0.2998 21.7091
0.2867 0.2 20000 0.2943 20.1761
0.265 0.23 22500 0.2921 21.6522
0.3096 0.25 25000 0.2894 22.1505
0.2813 0.28 27500 0.2863 22.4993
0.2805 0.3 30000 0.2832 21.0114

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.2.dev0
  • Tokenizers 0.15.0