metadata
library_name: transformers
language:
- ha
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- google/fleurs
metrics:
- wer
model-index:
- name: FLEURS Finetuned Whisper Small - Ibrahim Ibrahim
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Google FLEURS
type: google/fleurs
config: ha_ng
split: test+validation[:79]
args: ha_ng
metrics:
- name: Wer
type: wer
value: 35.774552818089774
FLEURS Finetuned Whisper Small - Ibrahim Ibrahim
This model is a fine-tuned version of openai/whisper-small on the Google FLEURS dataset. It achieves the following results on the evaluation set:
- Loss: 0.7191
- Wer Ortho: 36.6759
- Wer: 35.7746
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 500
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
---|---|---|---|---|---|
0.1213 | 3.2680 | 500 | 0.7191 | 36.6759 | 35.7746 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3