MoLFormer-XL-both-10pct / configuration_molformer.py
shoffman's picture
Upload custom code for molformer models
c551b8a
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Molformer model configuration"""
from collections import OrderedDict
from typing import Mapping
from transformers.configuration_utils import PretrainedConfig
from transformers.onnx import OnnxConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
MOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"ibm/MoLFormer-XL-both-10pct": "https://huggingface.co/ibm/MoLFormer-XL-both-10pct/resolve/main/config.json",
}
class MolformerConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MolformerModel`]. It is used to instantiate an
Molformer model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the Molformer
[ibm/MoLFormer-XL-both-10pct](https://huggingface.co/ibm/MoLFormer-XL-both-10pct) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 2362):
Vocabulary size of the Molformer model. Defines the number of different tokens that can be represented by
the `inputs_ids` passed when calling [`MolformerModel`] or [`TFMolformerModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimension of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 768):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
embedding_dropout_prob (`float`, *optional*, defaults to 0.2):
The dropout probability for the word embeddings.
max_position_embeddings (`int`, *optional*, defaults to 202):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 1536).
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
linear_attention_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the linear attention layers normalization step.
num_random_features (`int`, *optional*, defaults to 32):
Random feature map dimension used in linear attention.
feature_map_kernel (`str` or `function`, *optional*, defaults to `"relu"`):
The non-linear activation function (function or string) in the generalized random features. If string,
`"gelu"`, `"relu"`, `"selu"`, and `"gelu_new"` ar supported.
deterministic_eval (`bool`, *optional*, defaults to `False`):
Whether the random features should only be redrawn when training or not. If `True` and `model.training` is
`False`, linear attention random feature weights will be constant, i.e., deterministic.
classifier_dropout_prob (`float`, *optional*):
The dropout probability for the classification head. If `None`, use `hidden_dropout_prob`.
classifier_skip_connection (`bool`, *optional*, defaults to `True`):
Whether a skip connection should be made between the layers of the classification head or not.
pad_token_id (`int`, *optional*, defaults to 2):
The id of the _padding_ token.
Example:
```python
>>> from transformers import MolformerModel, MolformerConfig
>>> # Initializing a Molformer ibm/MoLFormer-XL-both-10pct style configuration
>>> configuration = MolformerConfig()
>>> # Initializing a model from the ibm/MoLFormer-XL-both-10pct style configuration
>>> model = MolformerModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "molformer"
def __init__(
self,
vocab_size=2362,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=768,
hidden_act="gelu",
hidden_dropout_prob=0.1,
embedding_dropout_prob=0.2,
max_position_embeddings=202,
initializer_range=0.02,
layer_norm_eps=1e-12,
linear_attention_eps=1e-6,
num_random_features=32,
feature_map_kernel="relu",
deterministic_eval=False,
classifier_dropout_prob=None,
classifier_skip_connection=True,
pad_token_id=2,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.embedding_dropout_prob = embedding_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.linear_attention_eps = linear_attention_eps
self.num_random_features = num_random_features
self.feature_map_kernel = feature_map_kernel
self.deterministic_eval = deterministic_eval
self.classifier_dropout_prob = classifier_dropout_prob
self.classifier_skip_connection = classifier_skip_connection
# Copied from transformers.models.roberta.configuration_roberta.RobertaOnnxConfig with Roberta->Molformer
class MolformerOnnxConfig(OnnxConfig):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
else:
dynamic_axis = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
]
)