ibivibiv commited on
Commit
6377785
·
verified ·
1 Parent(s): 2b36539

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -2
README.md CHANGED
@@ -12,7 +12,8 @@ tags:
12
  # Strix Rufipes 70B
13
 
14
  # Model Details
15
- * **Trained by**: ibivibiv
 
16
  * **Model type:** **strix-rufipes-70b** is an auto-regressive language model fine tuned on the Llama 2 transformer architecture.
17
  * **Language(s)**: English
18
  * **Purpose**: Has specific training for logic enforcement, will do well in ARC or other logic testing as well as critical thinking tasks. This model is targeted towards planning exercises.
@@ -40,7 +41,7 @@ torch.set_default_device("cuda")
40
  model = AutoModelForCausalLM.from_pretrained("ibivibiv/strix-rufipes-70b", torch_dtype="auto", device_config='auto')
41
  tokenizer = AutoTokenizer.from_pretrained("ibivibiv/strix-rufipes-70b", trust_remote_code=True)
42
 
43
- inputs = tokenizer("Create a plan for developing the game of snake in python using pygame.", return_tensors="pt", return_attention_mask=False)
44
 
45
  outputs = model.generate(**inputs, max_length=200)
46
  text = tokenizer.batch_decode(outputs)[0]
 
12
  # Strix Rufipes 70B
13
 
14
  # Model Details
15
+ * **Trained by**: [ibivibiv](https://huggingface.co/ibivibiv)
16
+ * **Library**: [HuggingFace Transformers](https://github.com/huggingface/transformers)
17
  * **Model type:** **strix-rufipes-70b** is an auto-regressive language model fine tuned on the Llama 2 transformer architecture.
18
  * **Language(s)**: English
19
  * **Purpose**: Has specific training for logic enforcement, will do well in ARC or other logic testing as well as critical thinking tasks. This model is targeted towards planning exercises.
 
41
  model = AutoModelForCausalLM.from_pretrained("ibivibiv/strix-rufipes-70b", torch_dtype="auto", device_config='auto')
42
  tokenizer = AutoTokenizer.from_pretrained("ibivibiv/strix-rufipes-70b", trust_remote_code=True)
43
 
44
+ inputs = tokenizer("### Instruction: Create a plan for developing the game of snake in python using pygame.\n### Response:\n", return_tensors="pt", return_attention_mask=False)
45
 
46
  outputs = model.generate(**inputs, max_length=200)
47
  text = tokenizer.batch_decode(outputs)[0]