Update README.md
Browse files
README.md
CHANGED
@@ -12,7 +12,8 @@ tags:
|
|
12 |
# Strix Rufipes 70B
|
13 |
|
14 |
# Model Details
|
15 |
-
* **Trained by**: ibivibiv
|
|
|
16 |
* **Model type:** **strix-rufipes-70b** is an auto-regressive language model fine tuned on the Llama 2 transformer architecture.
|
17 |
* **Language(s)**: English
|
18 |
* **Purpose**: Has specific training for logic enforcement, will do well in ARC or other logic testing as well as critical thinking tasks. This model is targeted towards planning exercises.
|
@@ -40,7 +41,7 @@ torch.set_default_device("cuda")
|
|
40 |
model = AutoModelForCausalLM.from_pretrained("ibivibiv/strix-rufipes-70b", torch_dtype="auto", device_config='auto')
|
41 |
tokenizer = AutoTokenizer.from_pretrained("ibivibiv/strix-rufipes-70b", trust_remote_code=True)
|
42 |
|
43 |
-
inputs = tokenizer("Create a plan for developing the game of snake in python using pygame
|
44 |
|
45 |
outputs = model.generate(**inputs, max_length=200)
|
46 |
text = tokenizer.batch_decode(outputs)[0]
|
|
|
12 |
# Strix Rufipes 70B
|
13 |
|
14 |
# Model Details
|
15 |
+
* **Trained by**: [ibivibiv](https://huggingface.co/ibivibiv)
|
16 |
+
* **Library**: [HuggingFace Transformers](https://github.com/huggingface/transformers)
|
17 |
* **Model type:** **strix-rufipes-70b** is an auto-regressive language model fine tuned on the Llama 2 transformer architecture.
|
18 |
* **Language(s)**: English
|
19 |
* **Purpose**: Has specific training for logic enforcement, will do well in ARC or other logic testing as well as critical thinking tasks. This model is targeted towards planning exercises.
|
|
|
41 |
model = AutoModelForCausalLM.from_pretrained("ibivibiv/strix-rufipes-70b", torch_dtype="auto", device_config='auto')
|
42 |
tokenizer = AutoTokenizer.from_pretrained("ibivibiv/strix-rufipes-70b", trust_remote_code=True)
|
43 |
|
44 |
+
inputs = tokenizer("### Instruction: Create a plan for developing the game of snake in python using pygame.\n### Response:\n", return_tensors="pt", return_attention_mask=False)
|
45 |
|
46 |
outputs = model.generate(**inputs, max_length=200)
|
47 |
text = tokenizer.batch_decode(outputs)[0]
|