iamj33l's picture
Update README.md
cb32bf3 verified
metadata
library_name: transformers
license: apache-2.0
base_model: google-t5/t5-small
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: my_summarization_model
    results: []

my_summarization_model

This model is a fine-tuned version of google-t5/t5-small on an billsum dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2280
  • Rouge1: 0.4067
  • Rouge2: 0.1832
  • Rougel: 0.2719
  • Rougelsum: 0.2717
  • Gen Len: 126.8427

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 124 2.5595 0.3549 0.1384 0.2234 0.2233 123.0242
No log 2.0 248 2.4759 0.3779 0.1517 0.2462 0.2461 124.0323
No log 3.0 372 2.4305 0.3921 0.1647 0.2583 0.2582 126.379
No log 4.0 496 2.3922 0.393 0.1666 0.2609 0.261 126.1089
2.651 5.0 620 2.3726 0.3956 0.1689 0.2637 0.2641 126.3831
2.651 6.0 744 2.3473 0.3985 0.1736 0.2666 0.2669 126.4153
2.651 7.0 868 2.3269 0.3991 0.1717 0.2651 0.2651 126.4315
2.651 8.0 992 2.3154 0.3964 0.1695 0.2648 0.2647 126.5161
2.4496 9.0 1116 2.3047 0.4022 0.1755 0.2695 0.2694 126.5726
2.4496 10.0 1240 2.2988 0.4021 0.1758 0.27 0.2699 126.5161
2.4496 11.0 1364 2.2797 0.4033 0.1779 0.2718 0.2716 126.5726
2.4496 12.0 1488 2.2765 0.4072 0.1804 0.2719 0.2718 126.4758
2.3631 13.0 1612 2.2661 0.4074 0.1797 0.2722 0.2723 126.6452
2.3631 14.0 1736 2.2585 0.4042 0.1769 0.27 0.2698 126.6089
2.3631 15.0 1860 2.2539 0.4066 0.1797 0.2721 0.2722 126.6613
2.3631 16.0 1984 2.2497 0.403 0.176 0.2696 0.2697 126.6371
2.3203 17.0 2108 2.2438 0.4038 0.1783 0.2706 0.2707 126.7339
2.3203 18.0 2232 2.2375 0.4034 0.1787 0.2691 0.2693 126.7903
2.3203 19.0 2356 2.2354 0.4016 0.1779 0.2676 0.2677 126.8427
2.3203 20.0 2480 2.2334 0.4041 0.1787 0.2697 0.2697 126.8952
2.285 21.0 2604 2.2315 0.4026 0.1797 0.2694 0.2693 126.7903
2.285 22.0 2728 2.2302 0.4044 0.1804 0.27 0.27 126.7903
2.285 23.0 2852 2.2284 0.4055 0.1827 0.2716 0.2714 126.7379
2.285 24.0 2976 2.2283 0.4061 0.1825 0.2716 0.2715 126.7903
2.2698 25.0 3100 2.2280 0.4067 0.1832 0.2719 0.2717 126.8427

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1