|
import torch.nn as nn |
|
|
|
from . import common |
|
|
|
def build_model(args): |
|
return ResNet(args) |
|
|
|
class ResNet(nn.Module): |
|
def __init__(self, args, in_channels=3, out_channels=3, n_feats=None, kernel_size=None, n_resblocks=None, mean_shift=True): |
|
super(ResNet, self).__init__() |
|
|
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
|
|
self.n_feats = args.n_feats if n_feats is None else n_feats |
|
self.kernel_size = args.kernel_size if kernel_size is None else kernel_size |
|
self.n_resblocks = args.n_resblocks if n_resblocks is None else n_resblocks |
|
|
|
self.mean_shift = mean_shift |
|
self.rgb_range = args.rgb_range |
|
self.mean = self.rgb_range / 2 |
|
|
|
modules = [] |
|
modules.append(common.default_conv(self.in_channels, self.n_feats, self.kernel_size)) |
|
for _ in range(self.n_resblocks): |
|
modules.append(common.ResBlock(self.n_feats, self.kernel_size)) |
|
modules.append(common.default_conv(self.n_feats, self.out_channels, self.kernel_size)) |
|
|
|
self.body = nn.Sequential(*modules) |
|
|
|
def forward(self, input): |
|
if self.mean_shift: |
|
input = input - self.mean |
|
|
|
output = self.body(input) |
|
|
|
if self.mean_shift: |
|
output = output + self.mean |
|
|
|
return output |
|
|
|
|