metadata
base_model: hfl/chinese-roberta-wwm-ext
library_name: transformers
license: apache-2.0
metrics:
- accuracy
tags:
- generated_from_trainer
model-index:
- name: chinese-roberta-climate-transition-physical-risk-prediction-v1
results: []
chinese-roberta-climate-transition-physical-risk-prediction-v1
This model is a fine-tuned version of hfl/chinese-roberta-wwm-ext on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0003
- Accuracy: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 57 | 0.0072 | 1.0 |
No log | 2.0 | 114 | 0.0010 | 1.0 |
No log | 3.0 | 171 | 0.0006 | 1.0 |
No log | 4.0 | 228 | 0.0005 | 1.0 |
No log | 5.0 | 285 | 0.0004 | 1.0 |
No log | 6.0 | 342 | 0.0003 | 1.0 |
No log | 7.0 | 399 | 0.0003 | 1.0 |
No log | 8.0 | 456 | 0.0003 | 1.0 |
0.0243 | 9.0 | 513 | 0.0003 | 1.0 |
0.0243 | 10.0 | 570 | 0.0003 | 1.0 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1