final_model_main / README.md
huudan123's picture
Add new SentenceTransformer model.
7ac9b41 verified
---
base_model: huudan123/model_stage2
datasets: []
language: []
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:102645
- loss:CosineSimilarityLoss
widget:
- source_sentence: Tổng thống Bulgaria cố gắng phá vỡ bế tắc bầu cử
sentences:
- Maldives tổ chức bầu cử tổng thống mới
- Cháy rừng Oklahoma phá hủy nhà cửa - trong ảnh
- Một đang đi dọc theo một hồ bơi.
- source_sentence: Mel Smith qua đời tuổi 60 Vương quốc Anh thương tiếc một bộ
phim hài yêu thích
sentences:
- 'GL, Terral Hi Corn: Vậy, bạn thực sự tin vào từng lời của Terral đã viết?'
- Margaret Thatcher, cựu Thủ tướng Anh, qua đời tuổi 87
- Mỹ giúp cung cấp khí cho phiến quân Syria
- source_sentence: Một chui ra phía sau xe tải.
sentences:
- Nhân kỷ niệm 50 năm ngày mất của JFK, Dallas tổ chức lễ tưởng niệm đầu tiên
- Cổ phiếu Allegiant tăng 4 USD, tương đương 17,2%, lên 27,43 USD trong phiên giao
dịch sáng thứ Năm trên thị trường chứng khoán Nasdaq.
- Một gái trẻ đội bảo hiểm xe đạp với một chiếc xe đạp phía sau.
- source_sentence: AL gia hạn lên án bạo lực Syria
sentences:
- Tòa án Ai Cập ra lệnh thả Mubarak
- Obama lên án bạo lực Ai Cập, hủy bỏ các cuộc tập trận quân sự
- Trái phiếu kỳ hạn 30 năm US30YT = RR giảm 14/32 với lợi suất 4,26% từ 4,23%.
- source_sentence: Thật nực cười khi tôi thấy các hãng hàng không đôi khi yêu cầu
tắt những thứ này.
sentences:
- Tôi rất tiếc khi nghe điều này Kelly.
- Hàng loạt các cuộc tấn công Iraq giết chết ít nhất sáu người
- 'Các cuộc tấn công mạng được coi là mối đe dọa ngày càng tăng đối với mạng máy
tính quân sự và dân sự. '
model-index:
- name: SentenceTransformer based on huudan123/model_stage2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts evaluator
type: sts-evaluator
metrics:
- type: pearson_cosine
value: 0.05287418847635471
name: Pearson Cosine
- type: spearman_cosine
value: 0.33628129091743275
name: Spearman Cosine
- type: pearson_manhattan
value: 0.15493487298707004
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.3373742409125596
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.15533169047001907
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.33611237346676887
name: Spearman Euclidean
- type: pearson_dot
value: 0.05498172874565448
name: Pearson Dot
- type: spearman_dot
value: 0.05788159269305955
name: Spearman Dot
- type: pearson_max
value: 0.15533169047001907
name: Pearson Max
- type: spearman_max
value: 0.3373742409125596
name: Spearman Max
---
# SentenceTransformer based on huudan123/model_stage2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [huudan123/model_stage2](https://huggingface.co/huudan123/model_stage2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [huudan123/model_stage2](https://huggingface.co/huudan123/model_stage2) <!-- at revision 78216f64916cdd3714bc707046c014a6f562e89b -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("huudan123/final_model_main")
# Run inference
sentences = [
'Thật nực cười khi tôi thấy các hãng hàng không đôi khi yêu cầu tắt những thứ này.',
'Tôi rất tiếc khi nghe điều này Kelly.',
'Hàng loạt các cuộc tấn công Iraq giết chết ít nhất sáu người',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-evaluator`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:-------------------|:-----------|
| pearson_cosine | 0.0529 |
| spearman_cosine | 0.3363 |
| pearson_manhattan | 0.1549 |
| spearman_manhattan | 0.3374 |
| pearson_euclidean | 0.1553 |
| spearman_euclidean | 0.3361 |
| pearson_dot | 0.055 |
| spearman_dot | 0.0579 |
| pearson_max | 0.1553 |
| **spearman_max** | **0.3374** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Hyperparameters
#### Non-Default Hyperparameters
- `overwrite_output_dir`: True
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `learning_rate`: 2e-05
- `num_train_epochs`: 30
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
- `gradient_checkpointing`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: True
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 30
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: True
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | loss | sts-evaluator_spearman_max |
|:--------:|:--------:|:-------------:|:----------:|:--------------------------:|
| 0 | 0 | - | - | 0.6240 |
| 0.6234 | 500 | 0.0186 | - | - |
| 1.0 | 802 | - | 0.0215 | 0.7037 |
| 1.2469 | 1000 | 0.0071 | - | - |
| 1.8703 | 1500 | 0.0063 | - | - |
| 2.0 | 1604 | - | 0.0216 | 0.7184 |
| 2.4938 | 2000 | 0.0057 | - | - |
| 3.0 | 2406 | - | 0.0200 | 0.7298 |
| 3.1172 | 2500 | 0.0055 | - | - |
| 3.7406 | 3000 | 0.0052 | - | - |
| 4.0 | 3208 | - | 0.0175 | 0.7733 |
| 4.3641 | 3500 | 0.005 | - | - |
| 4.9875 | 4000 | 0.005 | - | - |
| 5.0 | 4010 | - | 0.0144 | 0.7820 |
| 5.6110 | 4500 | 0.0046 | - | - |
| 6.0 | 4812 | - | 0.0135 | 0.7839 |
| 6.2344 | 5000 | 0.0045 | - | - |
| 6.8579 | 5500 | 0.0043 | - | - |
| 7.0 | 5614 | - | 0.0132 | 0.7867 |
| 7.4813 | 6000 | 0.0041 | - | - |
| 8.0 | 6416 | - | 0.0113 | 0.7894 |
| 8.1047 | 6500 | 0.004 | - | - |
| 8.7282 | 7000 | 0.0037 | - | - |
| 9.0 | 7218 | - | 0.0105 | 0.7845 |
| 9.3516 | 7500 | 0.0036 | - | - |
| 9.9751 | 8000 | 0.0037 | - | - |
| **10.0** | **8020** | **-** | **0.0096** | **0.7963** |
| 10.5985 | 8500 | 0.0074 | - | - |
| 11.0 | 8822 | - | 0.2441 | 0.3470 |
| 11.2219 | 9000 | 0.0065 | - | - |
| 11.8454 | 9500 | 0.0063 | - | - |
| 12.0 | 9624 | - | 0.2443 | 0.2869 |
| 12.4688 | 10000 | 0.0062 | - | - |
| 13.0 | 10426 | - | 0.2446 | 0.2917 |
| 13.0923 | 10500 | 0.0061 | - | - |
| 13.7157 | 11000 | 0.006 | - | - |
| 14.0 | 11228 | - | 0.2446 | 0.3374 |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.33.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->