|
--- |
|
base_model: huudan123/model_stage2 |
|
datasets: [] |
|
language: [] |
|
library_name: sentence-transformers |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:102645 |
|
- loss:CosineSimilarityLoss |
|
widget: |
|
- source_sentence: Tổng thống Bulgaria cố gắng phá vỡ bế tắc bầu cử |
|
sentences: |
|
- Maldives tổ chức bầu cử tổng thống mới |
|
- Cháy rừng Oklahoma phá hủy nhà cửa - trong ảnh |
|
- Một đang đi dọc theo một hồ bơi. |
|
- source_sentence: Mel Smith qua đời ở tuổi 60 và Vương quốc Anh thương tiếc một bộ |
|
phim hài yêu thích |
|
sentences: |
|
- 'GL, Terral Hi Corn: Vậy, bạn thực sự tin vào từng lời của Terral đã viết?' |
|
- Margaret Thatcher, cựu Thủ tướng Anh, qua đời ở tuổi 87 |
|
- Mỹ giúp cung cấp vũ khí cho phiến quân Syria |
|
- source_sentence: Một chui ra phía sau xe tải. |
|
sentences: |
|
- Nhân kỷ niệm 50 năm ngày mất của JFK, Dallas tổ chức lễ tưởng niệm đầu tiên |
|
- Cổ phiếu Allegiant tăng 4 USD, tương đương 17,2%, lên 27,43 USD trong phiên giao |
|
dịch sáng thứ Năm trên thị trường chứng khoán Nasdaq. |
|
- Một cô gái trẻ đội mũ bảo hiểm xe đạp với một chiếc xe đạp ở phía sau. |
|
- source_sentence: AL gia hạn lên án bạo lực ở Syria |
|
sentences: |
|
- Tòa án Ai Cập ra lệnh thả Mubarak |
|
- Obama lên án bạo lực Ai Cập, hủy bỏ các cuộc tập trận quân sự |
|
- Trái phiếu kỳ hạn 30 năm US30YT = RR giảm 14/32 với lợi suất 4,26% từ 4,23%. |
|
- source_sentence: Thật nực cười khi tôi thấy các hãng hàng không đôi khi yêu cầu |
|
tắt những thứ này. |
|
sentences: |
|
- Tôi rất tiếc khi nghe điều này Kelly. |
|
- Hàng loạt các cuộc tấn công Iraq giết chết ít nhất sáu người |
|
- 'Các cuộc tấn công mạng được coi là mối đe dọa ngày càng tăng đối với mạng máy |
|
tính quân sự và dân sự. ' |
|
model-index: |
|
- name: SentenceTransformer based on huudan123/model_stage2 |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts evaluator |
|
type: sts-evaluator |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.05287418847635471 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.33628129091743275 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.15493487298707004 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.3373742409125596 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.15533169047001907 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.33611237346676887 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.05498172874565448 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.05788159269305955 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.15533169047001907 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.3373742409125596 |
|
name: Spearman Max |
|
--- |
|
|
|
# SentenceTransformer based on huudan123/model_stage2 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [huudan123/model_stage2](https://huggingface.co/huudan123/model_stage2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [huudan123/model_stage2](https://huggingface.co/huudan123/model_stage2) <!-- at revision 78216f64916cdd3714bc707046c014a6f562e89b --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("huudan123/final_model_main") |
|
# Run inference |
|
sentences = [ |
|
'Thật nực cười khi tôi thấy các hãng hàng không đôi khi yêu cầu tắt những thứ này.', |
|
'Tôi rất tiếc khi nghe điều này Kelly.', |
|
'Hàng loạt các cuộc tấn công Iraq giết chết ít nhất sáu người', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-evaluator` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:-------------------|:-----------| |
|
| pearson_cosine | 0.0529 | |
|
| spearman_cosine | 0.3363 | |
|
| pearson_manhattan | 0.1549 | |
|
| spearman_manhattan | 0.3374 | |
|
| pearson_euclidean | 0.1553 | |
|
| spearman_euclidean | 0.3361 | |
|
| pearson_dot | 0.055 | |
|
| spearman_dot | 0.0579 | |
|
| pearson_max | 0.1553 | |
|
| **spearman_max** | **0.3374** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `overwrite_output_dir`: True |
|
- `eval_strategy`: epoch |
|
- `per_device_train_batch_size`: 128 |
|
- `per_device_eval_batch_size`: 128 |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 30 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
- `load_best_model_at_end`: True |
|
- `gradient_checkpointing`: True |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: True |
|
- `do_predict`: False |
|
- `eval_strategy`: epoch |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 128 |
|
- `per_device_eval_batch_size`: 128 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 30 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: True |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | loss | sts-evaluator_spearman_max | |
|
|:--------:|:--------:|:-------------:|:----------:|:--------------------------:| |
|
| 0 | 0 | - | - | 0.6240 | |
|
| 0.6234 | 500 | 0.0186 | - | - | |
|
| 1.0 | 802 | - | 0.0215 | 0.7037 | |
|
| 1.2469 | 1000 | 0.0071 | - | - | |
|
| 1.8703 | 1500 | 0.0063 | - | - | |
|
| 2.0 | 1604 | - | 0.0216 | 0.7184 | |
|
| 2.4938 | 2000 | 0.0057 | - | - | |
|
| 3.0 | 2406 | - | 0.0200 | 0.7298 | |
|
| 3.1172 | 2500 | 0.0055 | - | - | |
|
| 3.7406 | 3000 | 0.0052 | - | - | |
|
| 4.0 | 3208 | - | 0.0175 | 0.7733 | |
|
| 4.3641 | 3500 | 0.005 | - | - | |
|
| 4.9875 | 4000 | 0.005 | - | - | |
|
| 5.0 | 4010 | - | 0.0144 | 0.7820 | |
|
| 5.6110 | 4500 | 0.0046 | - | - | |
|
| 6.0 | 4812 | - | 0.0135 | 0.7839 | |
|
| 6.2344 | 5000 | 0.0045 | - | - | |
|
| 6.8579 | 5500 | 0.0043 | - | - | |
|
| 7.0 | 5614 | - | 0.0132 | 0.7867 | |
|
| 7.4813 | 6000 | 0.0041 | - | - | |
|
| 8.0 | 6416 | - | 0.0113 | 0.7894 | |
|
| 8.1047 | 6500 | 0.004 | - | - | |
|
| 8.7282 | 7000 | 0.0037 | - | - | |
|
| 9.0 | 7218 | - | 0.0105 | 0.7845 | |
|
| 9.3516 | 7500 | 0.0036 | - | - | |
|
| 9.9751 | 8000 | 0.0037 | - | - | |
|
| **10.0** | **8020** | **-** | **0.0096** | **0.7963** | |
|
| 10.5985 | 8500 | 0.0074 | - | - | |
|
| 11.0 | 8822 | - | 0.2441 | 0.3470 | |
|
| 11.2219 | 9000 | 0.0065 | - | - | |
|
| 11.8454 | 9500 | 0.0063 | - | - | |
|
| 12.0 | 9624 | - | 0.2443 | 0.2869 | |
|
| 12.4688 | 10000 | 0.0062 | - | - | |
|
| 13.0 | 10426 | - | 0.2446 | 0.2917 | |
|
| 13.0923 | 10500 | 0.0061 | - | - | |
|
| 13.7157 | 11000 | 0.006 | - | - | |
|
| 14.0 | 11228 | - | 0.2446 | 0.3374 | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.42.4 |
|
- PyTorch: 2.3.1+cu121 |
|
- Accelerate: 0.33.0 |
|
- Datasets: 2.20.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |