fix: update notebook to work directly from HuggingFace
Browse files- notebooks/SCU_Demo.ipynb +382 -388
notebooks/SCU_Demo.ipynb
CHANGED
|
@@ -1,391 +1,385 @@
|
|
| 1 |
{
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
"# Shannon Control Unit (SCU) Demo\n",
|
| 10 |
-
"\n",
|
| 11 |
-
"[](https://colab.research.google.com/github/Hmbown/shannon-control-unit/blob/main/notebooks/SCU_Demo.ipynb)\n",
|
| 12 |
-
"\n",
|
| 13 |
-
"This notebook demonstrates the Shannon Control Unit - an adaptive regularization system that achieves **15.6% lower perplexity** without manual hyperparameter tuning."
|
| 14 |
-
]
|
| 15 |
-
},
|
| 16 |
-
{
|
| 17 |
-
"cell_type": "markdown",
|
| 18 |
-
"metadata": {
|
| 19 |
-
"id": "installation"
|
| 20 |
-
},
|
| 21 |
-
"source": [
|
| 22 |
-
"## 1. Installation\n",
|
| 23 |
-
"\n",
|
| 24 |
-
"First, install the required packages:"
|
| 25 |
-
]
|
| 26 |
-
},
|
| 27 |
-
{
|
| 28 |
-
"cell_type": "code",
|
| 29 |
-
"execution_count": null,
|
| 30 |
-
"metadata": {
|
| 31 |
-
"id": "install_packages"
|
| 32 |
-
},
|
| 33 |
-
"outputs": [],
|
| 34 |
-
"source": [
|
| 35 |
-
"!pip install -q transformers peft torch accelerate\n",
|
| 36 |
-
"!pip install -q matplotlib pandas numpy"
|
| 37 |
-
]
|
| 38 |
-
},
|
| 39 |
-
{
|
| 40 |
-
"cell_type": "markdown",
|
| 41 |
-
"metadata": {
|
| 42 |
-
"id": "load_model"
|
| 43 |
-
},
|
| 44 |
-
"source": [
|
| 45 |
-
"## 2. Load Model with SCU Adapter\n",
|
| 46 |
-
"\n",
|
| 47 |
-
"Load the base Llama model and apply the SCU-trained adapter:"
|
| 48 |
-
]
|
| 49 |
-
},
|
| 50 |
-
{
|
| 51 |
-
"cell_type": "code",
|
| 52 |
-
"execution_count": null,
|
| 53 |
-
"metadata": {
|
| 54 |
-
"id": "load_model_code"
|
| 55 |
-
},
|
| 56 |
-
"outputs": [],
|
| 57 |
-
"source": [
|
| 58 |
-
"import torch\n",
|
| 59 |
-
"from transformers import AutoModelForCausalLM, AutoTokenizer\n",
|
| 60 |
-
"from peft import PeftModel\n",
|
| 61 |
-
"\n",
|
| 62 |
-
"# Check available device\n",
|
| 63 |
-
"device = 'cuda' if torch.cuda.is_available() else 'cpu'\n",
|
| 64 |
-
"print(f'Using device: {device}')\n",
|
| 65 |
-
"\n",
|
| 66 |
-
"# Load base model\n",
|
| 67 |
-
"base_model_id = 'meta-llama/Llama-3.2-1B'\n",
|
| 68 |
-
"print(f'Loading base model: {base_model_id}...')\n",
|
| 69 |
-
"\n",
|
| 70 |
-
"base_model = AutoModelForCausalLM.from_pretrained(\n",
|
| 71 |
-
" base_model_id,\n",
|
| 72 |
-
" device_map='auto',\n",
|
| 73 |
-
" torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,\n",
|
| 74 |
-
" trust_remote_code=True\n",
|
| 75 |
-
")\n",
|
| 76 |
-
"\n",
|
| 77 |
-
"tokenizer = AutoTokenizer.from_pretrained(base_model_id)\n",
|
| 78 |
-
"if tokenizer.pad_token is None:\n",
|
| 79 |
-
" tokenizer.pad_token = tokenizer.eos_token\n",
|
| 80 |
-
"\n",
|
| 81 |
-
"print('Base model loaded successfully!')"
|
| 82 |
-
]
|
| 83 |
-
},
|
| 84 |
-
{
|
| 85 |
-
"cell_type": "code",
|
| 86 |
-
"execution_count": null,
|
| 87 |
-
"metadata": {
|
| 88 |
-
"id": "load_adapter"
|
| 89 |
-
},
|
| 90 |
-
"outputs": [],
|
| 91 |
-
"source": [
|
| 92 |
-
"# Load SCU adapter\n",
|
| 93 |
-
"adapter_id = 'hunterbown/shannon-control-unit'\n",
|
| 94 |
-
"print(f'Loading SCU adapter: {adapter_id}...')\n",
|
| 95 |
-
"\n",
|
| 96 |
-
"model = PeftModel.from_pretrained(base_model, adapter_id)\n",
|
| 97 |
-
"model.eval()\n",
|
| 98 |
-
"\n",
|
| 99 |
-
"print('SCU adapter loaded successfully!')\n",
|
| 100 |
-
"print(f'Model ready for inference on {device}')"
|
| 101 |
-
]
|
| 102 |
-
},
|
| 103 |
-
{
|
| 104 |
-
"cell_type": "markdown",
|
| 105 |
-
"metadata": {
|
| 106 |
-
"id": "generation"
|
| 107 |
-
},
|
| 108 |
-
"source": [
|
| 109 |
-
"## 3. Generate Text\n",
|
| 110 |
-
"\n",
|
| 111 |
-
"Test the model with different prompts:"
|
| 112 |
-
]
|
| 113 |
-
},
|
| 114 |
-
{
|
| 115 |
-
"cell_type": "code",
|
| 116 |
-
"execution_count": null,
|
| 117 |
-
"metadata": {
|
| 118 |
-
"id": "generate_function"
|
| 119 |
-
},
|
| 120 |
-
"outputs": [],
|
| 121 |
-
"source": [
|
| 122 |
-
"def generate_text(prompt, max_length=100, temperature=0.7):\n",
|
| 123 |
-
" \"\"\"Generate text using the SCU model.\"\"\"\n",
|
| 124 |
-
" inputs = tokenizer(prompt, return_tensors='pt').to(device)\n",
|
| 125 |
-
" \n",
|
| 126 |
-
" with torch.no_grad():\n",
|
| 127 |
-
" outputs = model.generate(\n",
|
| 128 |
-
" **inputs,\n",
|
| 129 |
-
" max_length=max_length,\n",
|
| 130 |
-
" temperature=temperature,\n",
|
| 131 |
-
" do_sample=True,\n",
|
| 132 |
-
" pad_token_id=tokenizer.pad_token_id\n",
|
| 133 |
-
" )\n",
|
| 134 |
-
" \n",
|
| 135 |
-
" generated = tokenizer.decode(outputs[0], skip_special_tokens=True)\n",
|
| 136 |
-
" return generated\n",
|
| 137 |
-
"\n",
|
| 138 |
-
"# Test generation\n",
|
| 139 |
-
"test_prompt = 'The key to understanding information theory is'\n",
|
| 140 |
-
"print(f'Prompt: {test_prompt}')\n",
|
| 141 |
-
"print('-' * 50)\n",
|
| 142 |
-
"print(generate_text(test_prompt))"
|
| 143 |
-
]
|
| 144 |
-
},
|
| 145 |
-
{
|
| 146 |
-
"cell_type": "markdown",
|
| 147 |
-
"metadata": {
|
| 148 |
-
"id": "examples"
|
| 149 |
-
},
|
| 150 |
-
"source": [
|
| 151 |
-
"## 4. Try Different Examples\n",
|
| 152 |
-
"\n",
|
| 153 |
-
"Test the model on various tasks:"
|
| 154 |
-
]
|
| 155 |
-
},
|
| 156 |
-
{
|
| 157 |
-
"cell_type": "code",
|
| 158 |
-
"execution_count": null,
|
| 159 |
-
"metadata": {
|
| 160 |
-
"id": "code_generation"
|
| 161 |
-
},
|
| 162 |
-
"outputs": [],
|
| 163 |
-
"source": [
|
| 164 |
-
"# Code generation\n",
|
| 165 |
-
"code_prompt = 'def fibonacci(n):'\n",
|
| 166 |
-
"print('Code Generation Example')\n",
|
| 167 |
-
"print('=' * 50)\n",
|
| 168 |
-
"print(generate_text(code_prompt, max_length=150, temperature=0.3))"
|
| 169 |
-
]
|
| 170 |
-
},
|
| 171 |
-
{
|
| 172 |
-
"cell_type": "code",
|
| 173 |
-
"execution_count": null,
|
| 174 |
-
"metadata": {
|
| 175 |
-
"id": "math_problem"
|
| 176 |
-
},
|
| 177 |
-
"outputs": [],
|
| 178 |
-
"source": [
|
| 179 |
-
"# Math explanation\n",
|
| 180 |
-
"math_prompt = 'To solve a quadratic equation, you need to'\n",
|
| 181 |
-
"print('Math Explanation Example')\n",
|
| 182 |
-
"print('=' * 50)\n",
|
| 183 |
-
"print(generate_text(math_prompt, max_length=120, temperature=0.5))"
|
| 184 |
-
]
|
| 185 |
-
},
|
| 186 |
-
{
|
| 187 |
-
"cell_type": "code",
|
| 188 |
-
"execution_count": null,
|
| 189 |
-
"metadata": {
|
| 190 |
-
"id": "creative_writing"
|
| 191 |
-
},
|
| 192 |
-
"outputs": [],
|
| 193 |
-
"source": [
|
| 194 |
-
"# Creative writing\n",
|
| 195 |
-
"story_prompt = 'In a world where AI controls'\n",
|
| 196 |
-
"print('Creative Writing Example')\n",
|
| 197 |
-
"print('=' * 50)\n",
|
| 198 |
-
"print(generate_text(story_prompt, max_length=150, temperature=0.9))"
|
| 199 |
-
]
|
| 200 |
-
},
|
| 201 |
-
{
|
| 202 |
-
"cell_type": "markdown",
|
| 203 |
-
"metadata": {
|
| 204 |
-
"id": "evaluation"
|
| 205 |
-
},
|
| 206 |
-
"source": [
|
| 207 |
-
"## 5. Evaluate Performance\n",
|
| 208 |
-
"\n",
|
| 209 |
-
"Compare SCU model perplexity to baseline:"
|
| 210 |
-
]
|
| 211 |
-
},
|
| 212 |
-
{
|
| 213 |
-
"cell_type": "code",
|
| 214 |
-
"execution_count": null,
|
| 215 |
-
"metadata": {
|
| 216 |
-
"id": "evaluate_perplexity"
|
| 217 |
-
},
|
| 218 |
-
"outputs": [],
|
| 219 |
-
"source": [
|
| 220 |
-
"import math\n",
|
| 221 |
-
"\n",
|
| 222 |
-
"def calculate_perplexity(model, text, tokenizer):\n",
|
| 223 |
-
" \"\"\"Calculate perplexity for given text.\"\"\"\n",
|
| 224 |
-
" inputs = tokenizer(text, return_tensors='pt', truncation=True, max_length=512).to(device)\n",
|
| 225 |
-
" \n",
|
| 226 |
-
" with torch.no_grad():\n",
|
| 227 |
-
" outputs = model(**inputs, labels=inputs['input_ids'])\n",
|
| 228 |
-
" loss = outputs.loss\n",
|
| 229 |
-
" perplexity = math.exp(loss.item())\n",
|
| 230 |
-
" \n",
|
| 231 |
-
" return perplexity\n",
|
| 232 |
-
"\n",
|
| 233 |
-
"# Test text for evaluation\n",
|
| 234 |
-
"test_text = \"\"\"\n",
|
| 235 |
-
"Machine learning is a subset of artificial intelligence that enables \n",
|
| 236 |
-
"systems to learn and improve from experience without being explicitly \n",
|
| 237 |
-
"programmed. It focuses on developing computer programs that can access \n",
|
| 238 |
-
"data and use it to learn for themselves.\n",
|
| 239 |
-
"\"\"\"\n",
|
| 240 |
-
"\n",
|
| 241 |
-
"# Calculate perplexity\n",
|
| 242 |
-
"scu_perplexity = calculate_perplexity(model, test_text, tokenizer)\n",
|
| 243 |
-
"print(f'SCU Model Perplexity: {scu_perplexity:.2f}')\n",
|
| 244 |
-
"print(f'Baseline Perplexity (reported): 15.14')\n",
|
| 245 |
-
"print(f'Improvement: {(15.14 - scu_perplexity) / 15.14 * 100:.1f}%')"
|
| 246 |
-
]
|
| 247 |
-
},
|
| 248 |
-
{
|
| 249 |
-
"cell_type": "markdown",
|
| 250 |
-
"metadata": {
|
| 251 |
-
"id": "visualization"
|
| 252 |
-
},
|
| 253 |
-
"source": [
|
| 254 |
-
"## 6. Visualize Control Dynamics\n",
|
| 255 |
-
"\n",
|
| 256 |
-
"Show how SCU maintains the target compression ratio during training:"
|
| 257 |
-
]
|
| 258 |
-
},
|
| 259 |
-
{
|
| 260 |
-
"cell_type": "code",
|
| 261 |
-
"execution_count": null,
|
| 262 |
-
"metadata": {
|
| 263 |
-
"id": "plot_control"
|
| 264 |
-
},
|
| 265 |
-
"outputs": [],
|
| 266 |
-
"source": [
|
| 267 |
-
"import matplotlib.pyplot as plt\n",
|
| 268 |
-
"import numpy as np\n",
|
| 269 |
-
"\n",
|
| 270 |
-
"# Simulate control dynamics (for demonstration)\n",
|
| 271 |
-
"steps = np.arange(0, 270)\n",
|
| 272 |
-
"target_s = 0.01 # 1% target\n",
|
| 273 |
-
"deadband = 0.002 # ±0.2pp\n",
|
| 274 |
-
"\n",
|
| 275 |
-
"# Simulated S(t) converging to target\n",
|
| 276 |
-
"s_values = target_s + 0.02 * np.exp(-steps/50) * np.sin(steps/10) + np.random.normal(0, 0.0005, len(steps))\n",
|
| 277 |
-
"s_values = np.clip(s_values, 0, 0.03)\n",
|
| 278 |
-
"\n",
|
| 279 |
-
"# Plot\n",
|
| 280 |
-
"plt.figure(figsize=(10, 6))\n",
|
| 281 |
-
"plt.plot(steps, s_values * 100, 'b-', linewidth=2, label='S(t)')\n",
|
| 282 |
-
"plt.axhspan((target_s - deadband) * 100, (target_s + deadband) * 100, \n",
|
| 283 |
-
" alpha=0.2, color='green', label=f'Target: {target_s*100:.1f}% ± {deadband*100:.1f}pp')\n",
|
| 284 |
-
"plt.axhline(target_s * 100, color='green', linestyle='--', alpha=0.5)\n",
|
| 285 |
-
"\n",
|
| 286 |
-
"plt.xlabel('Training Step', fontsize=12)\n",
|
| 287 |
-
"plt.ylabel('S (%)', fontsize=12)\n",
|
| 288 |
-
"plt.title('SCU Control: S(t) Tracking Target', fontsize=14, fontweight='bold')\n",
|
| 289 |
-
"plt.legend()\n",
|
| 290 |
-
"plt.grid(True, alpha=0.3)\n",
|
| 291 |
-
"plt.tight_layout()\n",
|
| 292 |
-
"plt.show()\n",
|
| 293 |
-
"\n",
|
| 294 |
-
"print('The plot shows how SCU maintains the compression ratio S within the target band.')\n",
|
| 295 |
-
"print('This automatic control eliminates the need for manual hyperparameter tuning.')"
|
| 296 |
-
]
|
| 297 |
-
},
|
| 298 |
-
{
|
| 299 |
-
"cell_type": "markdown",
|
| 300 |
-
"metadata": {
|
| 301 |
-
"id": "comparison"
|
| 302 |
-
},
|
| 303 |
-
"source": [
|
| 304 |
-
"## 7. Performance Comparison\n",
|
| 305 |
-
"\n",
|
| 306 |
-
"Compare SCU with baseline model:"
|
| 307 |
-
]
|
| 308 |
-
},
|
| 309 |
-
{
|
| 310 |
-
"cell_type": "code",
|
| 311 |
-
"execution_count": null,
|
| 312 |
-
"metadata": {
|
| 313 |
-
"id": "compare_models"
|
| 314 |
-
},
|
| 315 |
-
"outputs": [],
|
| 316 |
-
"source": [
|
| 317 |
-
"# Performance metrics\n",
|
| 318 |
-
"results = {\n",
|
| 319 |
-
" 'Metric': ['Bits per Token', 'Perplexity', 'Compression Ratio'],\n",
|
| 320 |
-
" 'Baseline': [3.920, 15.14, '0.0%'],\n",
|
| 321 |
-
" 'SCU': [3.676, 12.78, '1.0%'],\n",
|
| 322 |
-
" 'Improvement': ['-6.2%', '-15.6%', 'Controlled']\n",
|
| 323 |
-
"}\n",
|
| 324 |
-
"\n",
|
| 325 |
-
"# Display as table\n",
|
| 326 |
-
"import pandas as pd\n",
|
| 327 |
-
"df = pd.DataFrame(results)\n",
|
| 328 |
-
"print('\\nPerformance Comparison: Baseline vs SCU')\n",
|
| 329 |
-
"print('=' * 60)\n",
|
| 330 |
-
"print(df.to_string(index=False))\n",
|
| 331 |
-
"print('=' * 60)\n",
|
| 332 |
-
"print('\\nKey Achievement: 15.6% perplexity reduction with automatic tuning!')"
|
| 333 |
-
]
|
| 334 |
-
},
|
| 335 |
-
{
|
| 336 |
-
"cell_type": "markdown",
|
| 337 |
-
"metadata": {
|
| 338 |
-
"id": "conclusion"
|
| 339 |
-
},
|
| 340 |
-
"source": [
|
| 341 |
-
"## 8. Conclusion\n",
|
| 342 |
-
"\n",
|
| 343 |
-
"The Shannon Control Unit demonstrates:\n",
|
| 344 |
-
"\n",
|
| 345 |
-
"- **15.6% lower perplexity** compared to baseline\n",
|
| 346 |
-
"- **Automatic regularization** without manual tuning\n",
|
| 347 |
-
"- **Stable control** maintaining 1% ± 0.2pp compression ratio\n",
|
| 348 |
-
"- **Generalizable approach** across model scales\n",
|
| 349 |
-
"\n",
|
| 350 |
-
"### Next Steps\n",
|
| 351 |
-
"\n",
|
| 352 |
-
"1. Try different prompts to explore model capabilities\n",
|
| 353 |
-
"2. Fine-tune your own models with SCU control\n",
|
| 354 |
-
"3. Read the [paper](https://arxiv.org/abs/xxxx.xxxxx) for technical details\n",
|
| 355 |
-
"\n",
|
| 356 |
-
"### Resources\n",
|
| 357 |
-
"\n",
|
| 358 |
-
"- Model: [hunterbown/shannon-control-unit](https://huggingface.co/hunterbown/shannon-control-unit)\n",
|
| 359 |
-
"- GitHub: [shannon-control-unit](https://github.com/Hmbown/shannon-control-unit)\n",
|
| 360 |
-
"- Contact: hunter@shannonlabs.dev"
|
| 361 |
-
]
|
| 362 |
-
}
|
| 363 |
-
],
|
| 364 |
-
"metadata": {
|
| 365 |
-
"accelerator": "GPU",
|
| 366 |
-
"colab": {
|
| 367 |
-
"name": "SCU_Demo.ipynb",
|
| 368 |
-
"provenance": [],
|
| 369 |
-
"toc_visible": true
|
| 370 |
-
},
|
| 371 |
-
"kernelspec": {
|
| 372 |
-
"display_name": "Python 3",
|
| 373 |
-
"language": "python",
|
| 374 |
-
"name": "python3"
|
| 375 |
-
},
|
| 376 |
-
"language_info": {
|
| 377 |
-
"codemirror_mode": {
|
| 378 |
-
"name": "ipython",
|
| 379 |
-
"version": 3
|
| 380 |
-
},
|
| 381 |
-
"file_extension": ".py",
|
| 382 |
-
"mimetype": "text/x-python",
|
| 383 |
-
"name": "python",
|
| 384 |
-
"nbconvert_exporter": "python",
|
| 385 |
-
"pygments_lexer": "ipython3",
|
| 386 |
-
"version": "3.10.12"
|
| 387 |
-
}
|
| 388 |
},
|
| 389 |
-
|
| 390 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 391 |
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {
|
| 6 |
+
"id": "header"
|
| 7 |
+
},
|
| 8 |
+
"source": "# Shannon Control Unit (SCU) Demo\n\n[](https://huggingface.co/hunterbown/shannon-control-unit/blob/main/notebooks/SCU_Demo.ipynb)\n\nThis notebook demonstrates the Shannon Control Unit - an adaptive regularization system that achieves **15.6% lower perplexity** without manual hyperparameter tuning.\n\n**Note:** Click the \"Open in Colab\" badge above, then in the Colab interface, click File → Save a copy in Drive to run the notebook."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
},
|
| 10 |
+
{
|
| 11 |
+
"cell_type": "markdown",
|
| 12 |
+
"metadata": {
|
| 13 |
+
"id": "installation"
|
| 14 |
+
},
|
| 15 |
+
"source": [
|
| 16 |
+
"## 1. Installation\n",
|
| 17 |
+
"\n",
|
| 18 |
+
"First, install the required packages:"
|
| 19 |
+
]
|
| 20 |
+
},
|
| 21 |
+
{
|
| 22 |
+
"cell_type": "code",
|
| 23 |
+
"execution_count": null,
|
| 24 |
+
"metadata": {
|
| 25 |
+
"id": "install_packages"
|
| 26 |
+
},
|
| 27 |
+
"outputs": [],
|
| 28 |
+
"source": [
|
| 29 |
+
"!pip install -q transformers peft torch accelerate\n",
|
| 30 |
+
"!pip install -q matplotlib pandas numpy"
|
| 31 |
+
]
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"cell_type": "markdown",
|
| 35 |
+
"metadata": {
|
| 36 |
+
"id": "load_model"
|
| 37 |
+
},
|
| 38 |
+
"source": [
|
| 39 |
+
"## 2. Load Model with SCU Adapter\n",
|
| 40 |
+
"\n",
|
| 41 |
+
"Load the base Llama model and apply the SCU-trained adapter:"
|
| 42 |
+
]
|
| 43 |
+
},
|
| 44 |
+
{
|
| 45 |
+
"cell_type": "code",
|
| 46 |
+
"execution_count": null,
|
| 47 |
+
"metadata": {
|
| 48 |
+
"id": "load_model_code"
|
| 49 |
+
},
|
| 50 |
+
"outputs": [],
|
| 51 |
+
"source": [
|
| 52 |
+
"import torch\n",
|
| 53 |
+
"from transformers import AutoModelForCausalLM, AutoTokenizer\n",
|
| 54 |
+
"from peft import PeftModel\n",
|
| 55 |
+
"\n",
|
| 56 |
+
"# Check available device\n",
|
| 57 |
+
"device = 'cuda' if torch.cuda.is_available() else 'cpu'\n",
|
| 58 |
+
"print(f'Using device: {device}')\n",
|
| 59 |
+
"\n",
|
| 60 |
+
"# Load base model\n",
|
| 61 |
+
"base_model_id = 'meta-llama/Llama-3.2-1B'\n",
|
| 62 |
+
"print(f'Loading base model: {base_model_id}...')\n",
|
| 63 |
+
"\n",
|
| 64 |
+
"base_model = AutoModelForCausalLM.from_pretrained(\n",
|
| 65 |
+
" base_model_id,\n",
|
| 66 |
+
" device_map='auto',\n",
|
| 67 |
+
" torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,\n",
|
| 68 |
+
" trust_remote_code=True\n",
|
| 69 |
+
")\n",
|
| 70 |
+
"\n",
|
| 71 |
+
"tokenizer = AutoTokenizer.from_pretrained(base_model_id)\n",
|
| 72 |
+
"if tokenizer.pad_token is None:\n",
|
| 73 |
+
" tokenizer.pad_token = tokenizer.eos_token\n",
|
| 74 |
+
"\n",
|
| 75 |
+
"print('Base model loaded successfully!')"
|
| 76 |
+
]
|
| 77 |
+
},
|
| 78 |
+
{
|
| 79 |
+
"cell_type": "code",
|
| 80 |
+
"execution_count": null,
|
| 81 |
+
"metadata": {
|
| 82 |
+
"id": "load_adapter"
|
| 83 |
+
},
|
| 84 |
+
"outputs": [],
|
| 85 |
+
"source": [
|
| 86 |
+
"# Load SCU adapter\n",
|
| 87 |
+
"adapter_id = 'hunterbown/shannon-control-unit'\n",
|
| 88 |
+
"print(f'Loading SCU adapter: {adapter_id}...')\n",
|
| 89 |
+
"\n",
|
| 90 |
+
"model = PeftModel.from_pretrained(base_model, adapter_id)\n",
|
| 91 |
+
"model.eval()\n",
|
| 92 |
+
"\n",
|
| 93 |
+
"print('SCU adapter loaded successfully!')\n",
|
| 94 |
+
"print(f'Model ready for inference on {device}')"
|
| 95 |
+
]
|
| 96 |
+
},
|
| 97 |
+
{
|
| 98 |
+
"cell_type": "markdown",
|
| 99 |
+
"metadata": {
|
| 100 |
+
"id": "generation"
|
| 101 |
+
},
|
| 102 |
+
"source": [
|
| 103 |
+
"## 3. Generate Text\n",
|
| 104 |
+
"\n",
|
| 105 |
+
"Test the model with different prompts:"
|
| 106 |
+
]
|
| 107 |
+
},
|
| 108 |
+
{
|
| 109 |
+
"cell_type": "code",
|
| 110 |
+
"execution_count": null,
|
| 111 |
+
"metadata": {
|
| 112 |
+
"id": "generate_function"
|
| 113 |
+
},
|
| 114 |
+
"outputs": [],
|
| 115 |
+
"source": [
|
| 116 |
+
"def generate_text(prompt, max_length=100, temperature=0.7):\n",
|
| 117 |
+
" \"\"\"Generate text using the SCU model.\"\"\"\n",
|
| 118 |
+
" inputs = tokenizer(prompt, return_tensors='pt').to(device)\n",
|
| 119 |
+
" \n",
|
| 120 |
+
" with torch.no_grad():\n",
|
| 121 |
+
" outputs = model.generate(\n",
|
| 122 |
+
" **inputs,\n",
|
| 123 |
+
" max_length=max_length,\n",
|
| 124 |
+
" temperature=temperature,\n",
|
| 125 |
+
" do_sample=True,\n",
|
| 126 |
+
" pad_token_id=tokenizer.pad_token_id\n",
|
| 127 |
+
" )\n",
|
| 128 |
+
" \n",
|
| 129 |
+
" generated = tokenizer.decode(outputs[0], skip_special_tokens=True)\n",
|
| 130 |
+
" return generated\n",
|
| 131 |
+
"\n",
|
| 132 |
+
"# Test generation\n",
|
| 133 |
+
"test_prompt = 'The key to understanding information theory is'\n",
|
| 134 |
+
"print(f'Prompt: {test_prompt}')\n",
|
| 135 |
+
"print('-' * 50)\n",
|
| 136 |
+
"print(generate_text(test_prompt))"
|
| 137 |
+
]
|
| 138 |
+
},
|
| 139 |
+
{
|
| 140 |
+
"cell_type": "markdown",
|
| 141 |
+
"metadata": {
|
| 142 |
+
"id": "examples"
|
| 143 |
+
},
|
| 144 |
+
"source": [
|
| 145 |
+
"## 4. Try Different Examples\n",
|
| 146 |
+
"\n",
|
| 147 |
+
"Test the model on various tasks:"
|
| 148 |
+
]
|
| 149 |
+
},
|
| 150 |
+
{
|
| 151 |
+
"cell_type": "code",
|
| 152 |
+
"execution_count": null,
|
| 153 |
+
"metadata": {
|
| 154 |
+
"id": "code_generation"
|
| 155 |
+
},
|
| 156 |
+
"outputs": [],
|
| 157 |
+
"source": [
|
| 158 |
+
"# Code generation\n",
|
| 159 |
+
"code_prompt = 'def fibonacci(n):'\n",
|
| 160 |
+
"print('Code Generation Example')\n",
|
| 161 |
+
"print('=' * 50)\n",
|
| 162 |
+
"print(generate_text(code_prompt, max_length=150, temperature=0.3))"
|
| 163 |
+
]
|
| 164 |
+
},
|
| 165 |
+
{
|
| 166 |
+
"cell_type": "code",
|
| 167 |
+
"execution_count": null,
|
| 168 |
+
"metadata": {
|
| 169 |
+
"id": "math_problem"
|
| 170 |
+
},
|
| 171 |
+
"outputs": [],
|
| 172 |
+
"source": [
|
| 173 |
+
"# Math explanation\n",
|
| 174 |
+
"math_prompt = 'To solve a quadratic equation, you need to'\n",
|
| 175 |
+
"print('Math Explanation Example')\n",
|
| 176 |
+
"print('=' * 50)\n",
|
| 177 |
+
"print(generate_text(math_prompt, max_length=120, temperature=0.5))"
|
| 178 |
+
]
|
| 179 |
+
},
|
| 180 |
+
{
|
| 181 |
+
"cell_type": "code",
|
| 182 |
+
"execution_count": null,
|
| 183 |
+
"metadata": {
|
| 184 |
+
"id": "creative_writing"
|
| 185 |
+
},
|
| 186 |
+
"outputs": [],
|
| 187 |
+
"source": [
|
| 188 |
+
"# Creative writing\n",
|
| 189 |
+
"story_prompt = 'In a world where AI controls'\n",
|
| 190 |
+
"print('Creative Writing Example')\n",
|
| 191 |
+
"print('=' * 50)\n",
|
| 192 |
+
"print(generate_text(story_prompt, max_length=150, temperature=0.9))"
|
| 193 |
+
]
|
| 194 |
+
},
|
| 195 |
+
{
|
| 196 |
+
"cell_type": "markdown",
|
| 197 |
+
"metadata": {
|
| 198 |
+
"id": "evaluation"
|
| 199 |
+
},
|
| 200 |
+
"source": [
|
| 201 |
+
"## 5. Evaluate Performance\n",
|
| 202 |
+
"\n",
|
| 203 |
+
"Compare SCU model perplexity to baseline:"
|
| 204 |
+
]
|
| 205 |
+
},
|
| 206 |
+
{
|
| 207 |
+
"cell_type": "code",
|
| 208 |
+
"execution_count": null,
|
| 209 |
+
"metadata": {
|
| 210 |
+
"id": "evaluate_perplexity"
|
| 211 |
+
},
|
| 212 |
+
"outputs": [],
|
| 213 |
+
"source": [
|
| 214 |
+
"import math\n",
|
| 215 |
+
"\n",
|
| 216 |
+
"def calculate_perplexity(model, text, tokenizer):\n",
|
| 217 |
+
" \"\"\"Calculate perplexity for given text.\"\"\"\n",
|
| 218 |
+
" inputs = tokenizer(text, return_tensors='pt', truncation=True, max_length=512).to(device)\n",
|
| 219 |
+
" \n",
|
| 220 |
+
" with torch.no_grad():\n",
|
| 221 |
+
" outputs = model(**inputs, labels=inputs['input_ids'])\n",
|
| 222 |
+
" loss = outputs.loss\n",
|
| 223 |
+
" perplexity = math.exp(loss.item())\n",
|
| 224 |
+
" \n",
|
| 225 |
+
" return perplexity\n",
|
| 226 |
+
"\n",
|
| 227 |
+
"# Test text for evaluation\n",
|
| 228 |
+
"test_text = \"\"\"\n",
|
| 229 |
+
"Machine learning is a subset of artificial intelligence that enables \n",
|
| 230 |
+
"systems to learn and improve from experience without being explicitly \n",
|
| 231 |
+
"programmed. It focuses on developing computer programs that can access \n",
|
| 232 |
+
"data and use it to learn for themselves.\n",
|
| 233 |
+
"\"\"\"\n",
|
| 234 |
+
"\n",
|
| 235 |
+
"# Calculate perplexity\n",
|
| 236 |
+
"scu_perplexity = calculate_perplexity(model, test_text, tokenizer)\n",
|
| 237 |
+
"print(f'SCU Model Perplexity: {scu_perplexity:.2f}')\n",
|
| 238 |
+
"print(f'Baseline Perplexity (reported): 15.14')\n",
|
| 239 |
+
"print(f'Improvement: {(15.14 - scu_perplexity) / 15.14 * 100:.1f}%')"
|
| 240 |
+
]
|
| 241 |
+
},
|
| 242 |
+
{
|
| 243 |
+
"cell_type": "markdown",
|
| 244 |
+
"metadata": {
|
| 245 |
+
"id": "visualization"
|
| 246 |
+
},
|
| 247 |
+
"source": [
|
| 248 |
+
"## 6. Visualize Control Dynamics\n",
|
| 249 |
+
"\n",
|
| 250 |
+
"Show how SCU maintains the target compression ratio during training:"
|
| 251 |
+
]
|
| 252 |
+
},
|
| 253 |
+
{
|
| 254 |
+
"cell_type": "code",
|
| 255 |
+
"execution_count": null,
|
| 256 |
+
"metadata": {
|
| 257 |
+
"id": "plot_control"
|
| 258 |
+
},
|
| 259 |
+
"outputs": [],
|
| 260 |
+
"source": [
|
| 261 |
+
"import matplotlib.pyplot as plt\n",
|
| 262 |
+
"import numpy as np\n",
|
| 263 |
+
"\n",
|
| 264 |
+
"# Simulate control dynamics (for demonstration)\n",
|
| 265 |
+
"steps = np.arange(0, 270)\n",
|
| 266 |
+
"target_s = 0.01 # 1% target\n",
|
| 267 |
+
"deadband = 0.002 # ±0.2pp\n",
|
| 268 |
+
"\n",
|
| 269 |
+
"# Simulated S(t) converging to target\n",
|
| 270 |
+
"s_values = target_s + 0.02 * np.exp(-steps/50) * np.sin(steps/10) + np.random.normal(0, 0.0005, len(steps))\n",
|
| 271 |
+
"s_values = np.clip(s_values, 0, 0.03)\n",
|
| 272 |
+
"\n",
|
| 273 |
+
"# Plot\n",
|
| 274 |
+
"plt.figure(figsize=(10, 6))\n",
|
| 275 |
+
"plt.plot(steps, s_values * 100, 'b-', linewidth=2, label='S(t)')\n",
|
| 276 |
+
"plt.axhspan((target_s - deadband) * 100, (target_s + deadband) * 100, \n",
|
| 277 |
+
" alpha=0.2, color='green', label=f'Target: {target_s*100:.1f}% ± {deadband*100:.1f}pp')\n",
|
| 278 |
+
"plt.axhline(target_s * 100, color='green', linestyle='--', alpha=0.5)\n",
|
| 279 |
+
"\n",
|
| 280 |
+
"plt.xlabel('Training Step', fontsize=12)\n",
|
| 281 |
+
"plt.ylabel('S (%)', fontsize=12)\n",
|
| 282 |
+
"plt.title('SCU Control: S(t) Tracking Target', fontsize=14, fontweight='bold')\n",
|
| 283 |
+
"plt.legend()\n",
|
| 284 |
+
"plt.grid(True, alpha=0.3)\n",
|
| 285 |
+
"plt.tight_layout()\n",
|
| 286 |
+
"plt.show()\n",
|
| 287 |
+
"\n",
|
| 288 |
+
"print('The plot shows how SCU maintains the compression ratio S within the target band.')\n",
|
| 289 |
+
"print('This automatic control eliminates the need for manual hyperparameter tuning.')"
|
| 290 |
+
]
|
| 291 |
+
},
|
| 292 |
+
{
|
| 293 |
+
"cell_type": "markdown",
|
| 294 |
+
"metadata": {
|
| 295 |
+
"id": "comparison"
|
| 296 |
+
},
|
| 297 |
+
"source": [
|
| 298 |
+
"## 7. Performance Comparison\n",
|
| 299 |
+
"\n",
|
| 300 |
+
"Compare SCU with baseline model:"
|
| 301 |
+
]
|
| 302 |
+
},
|
| 303 |
+
{
|
| 304 |
+
"cell_type": "code",
|
| 305 |
+
"execution_count": null,
|
| 306 |
+
"metadata": {
|
| 307 |
+
"id": "compare_models"
|
| 308 |
+
},
|
| 309 |
+
"outputs": [],
|
| 310 |
+
"source": [
|
| 311 |
+
"# Performance metrics\n",
|
| 312 |
+
"results = {\n",
|
| 313 |
+
" 'Metric': ['Bits per Token', 'Perplexity', 'Compression Ratio'],\n",
|
| 314 |
+
" 'Baseline': [3.920, 15.14, '0.0%'],\n",
|
| 315 |
+
" 'SCU': [3.676, 12.78, '1.0%'],\n",
|
| 316 |
+
" 'Improvement': ['-6.2%', '-15.6%', 'Controlled']\n",
|
| 317 |
+
"}\n",
|
| 318 |
+
"\n",
|
| 319 |
+
"# Display as table\n",
|
| 320 |
+
"import pandas as pd\n",
|
| 321 |
+
"df = pd.DataFrame(results)\n",
|
| 322 |
+
"print('\\nPerformance Comparison: Baseline vs SCU')\n",
|
| 323 |
+
"print('=' * 60)\n",
|
| 324 |
+
"print(df.to_string(index=False))\n",
|
| 325 |
+
"print('=' * 60)\n",
|
| 326 |
+
"print('\\nKey Achievement: 15.6% perplexity reduction with automatic tuning!')"
|
| 327 |
+
]
|
| 328 |
+
},
|
| 329 |
+
{
|
| 330 |
+
"cell_type": "markdown",
|
| 331 |
+
"metadata": {
|
| 332 |
+
"id": "conclusion"
|
| 333 |
+
},
|
| 334 |
+
"source": [
|
| 335 |
+
"## 8. Conclusion\n",
|
| 336 |
+
"\n",
|
| 337 |
+
"The Shannon Control Unit demonstrates:\n",
|
| 338 |
+
"\n",
|
| 339 |
+
"- **15.6% lower perplexity** compared to baseline\n",
|
| 340 |
+
"- **Automatic regularization** without manual tuning\n",
|
| 341 |
+
"- **Stable control** maintaining 1% ± 0.2pp compression ratio\n",
|
| 342 |
+
"- **Generalizable approach** across model scales\n",
|
| 343 |
+
"\n",
|
| 344 |
+
"### Next Steps\n",
|
| 345 |
+
"\n",
|
| 346 |
+
"1. Try different prompts to explore model capabilities\n",
|
| 347 |
+
"2. Fine-tune your own models with SCU control\n",
|
| 348 |
+
"3. Read the [paper](https://arxiv.org/abs/xxxx.xxxxx) for technical details\n",
|
| 349 |
+
"\n",
|
| 350 |
+
"### Resources\n",
|
| 351 |
+
"\n",
|
| 352 |
+
"- Model: [hunterbown/shannon-control-unit](https://huggingface.co/hunterbown/shannon-control-unit)\n",
|
| 353 |
+
"- GitHub: [shannon-control-unit](https://github.com/Hmbown/shannon-control-unit)\n",
|
| 354 |
+
"- Contact: hunter@shannonlabs.dev"
|
| 355 |
+
]
|
| 356 |
+
}
|
| 357 |
+
],
|
| 358 |
+
"metadata": {
|
| 359 |
+
"accelerator": "GPU",
|
| 360 |
+
"colab": {
|
| 361 |
+
"name": "SCU_Demo.ipynb",
|
| 362 |
+
"provenance": [],
|
| 363 |
+
"toc_visible": true
|
| 364 |
+
},
|
| 365 |
+
"kernelspec": {
|
| 366 |
+
"display_name": "Python 3",
|
| 367 |
+
"language": "python",
|
| 368 |
+
"name": "python3"
|
| 369 |
+
},
|
| 370 |
+
"language_info": {
|
| 371 |
+
"codemirror_mode": {
|
| 372 |
+
"name": "ipython",
|
| 373 |
+
"version": 3
|
| 374 |
+
},
|
| 375 |
+
"file_extension": ".py",
|
| 376 |
+
"mimetype": "text/x-python",
|
| 377 |
+
"name": "python",
|
| 378 |
+
"nbconvert_exporter": "python",
|
| 379 |
+
"pygments_lexer": "ipython3",
|
| 380 |
+
"version": "3.10.12"
|
| 381 |
+
}
|
| 382 |
+
},
|
| 383 |
+
"nbformat": 4,
|
| 384 |
+
"nbformat_minor": 0
|
| 385 |
}
|