bert-29 / README.md
hung200504's picture
bert-cased
9b43446
metadata
license: cc-by-4.0
base_model: deepset/bert-base-cased-squad2
tags:
  - generated_from_trainer
model-index:
  - name: bert-29
    results: []

bert-29

This model is a fine-tuned version of deepset/bert-base-cased-squad2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 6.1544

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
10.3108 0.02 5 12.3308
11.3676 0.05 10 12.2829
12.0965 0.07 15 12.2339
10.877 0.09 20 12.1855
11.5463 0.11 25 12.1375
10.4439 0.14 30 12.0898
11.3519 0.16 35 12.0421
11.2558 0.18 40 11.9943
11.0568 0.21 45 11.9462
11.3265 0.23 50 11.8980
9.511 0.25 55 11.8505
10.6662 0.28 60 11.8043
10.2726 0.3 65 11.7576
11.1502 0.32 70 11.7108
11.2245 0.34 75 11.6640
10.3183 0.37 80 11.6173
11.3083 0.39 85 11.5707
10.0481 0.41 90 11.5243
10.6689 0.44 95 11.4780
10.299 0.46 100 11.4322
10.9093 0.48 105 11.3863
10.0403 0.5 110 11.3403
10.3065 0.53 115 11.2948
10.4771 0.55 120 11.2493
9.685 0.57 125 11.2040
9.6081 0.6 130 11.1592
9.9776 0.62 135 11.1145
9.8161 0.64 140 11.0705
10.078 0.67 145 11.0263
10.5549 0.69 150 10.9828
9.9488 0.71 155 10.9384
10.1075 0.73 160 10.8946
9.4674 0.76 165 10.8509
10.077 0.78 170 10.8070
9.5688 0.8 175 10.7636
8.9946 0.83 180 10.7205
10.4224 0.85 185 10.6776
8.6883 0.87 190 10.6344
9.5508 0.89 195 10.5919
9.3088 0.92 200 10.5493
9.3799 0.94 205 10.5072
8.8564 0.96 210 10.4656
8.7775 0.99 215 10.4237
9.4815 1.01 220 10.3824
9.2469 1.03 225 10.3411
8.5056 1.06 230 10.3003
9.8006 1.08 235 10.2595
9.185 1.1 240 10.2181
9.3379 1.12 245 10.1769
8.5696 1.15 250 10.1359
8.4981 1.17 255 10.0960
8.9066 1.19 260 10.0554
9.043 1.22 265 10.0155
7.9105 1.24 270 9.9762
8.8268 1.26 275 9.9372
8.5896 1.28 280 9.8979
8.9422 1.31 285 9.8578
8.2276 1.33 290 9.8188
9.1443 1.35 295 9.7795
8.7467 1.38 300 9.7404
9.1588 1.4 305 9.7015
8.9789 1.42 310 9.6630
7.9135 1.44 315 9.6252
8.9771 1.47 320 9.5876
8.7356 1.49 325 9.5499
8.1398 1.51 330 9.5128
8.4803 1.54 335 9.4754
8.5553 1.56 340 9.4385
8.6194 1.58 345 9.4006
8.1879 1.61 350 9.3633
8.1535 1.63 355 9.3269
8.8795 1.65 360 9.2899
8.4935 1.67 365 9.2536
8.5901 1.7 370 9.2170
8.3013 1.72 375 9.1808
8.1959 1.74 380 9.1448
8.1158 1.77 385 9.1093
7.6286 1.79 390 9.0741
8.2353 1.81 395 9.0397
7.822 1.83 400 9.0050
8.0979 1.86 405 8.9706
8.7221 1.88 410 8.9365
7.8976 1.9 415 8.9018
8.1378 1.93 420 8.8677
7.8131 1.95 425 8.8335
8.2754 1.97 430 8.7997
7.6972 2.0 435 8.7658
7.99 2.02 440 8.7324
7.7428 2.04 445 8.6995
8.0031 2.06 450 8.6671
7.9012 2.09 455 8.6346
7.1693 2.11 460 8.6023
7.8746 2.13 465 8.5700
7.3467 2.16 470 8.5386
7.863 2.18 475 8.5073
7.5655 2.2 480 8.4759
7.8374 2.22 485 8.4446
7.731 2.25 490 8.4132
7.6392 2.27 495 8.3820
7.4547 2.29 500 8.3509
7.4642 2.32 505 8.3204
7.9489 2.34 510 8.2902
7.046 2.36 515 8.2605
7.2211 2.39 520 8.2313
7.2287 2.41 525 8.2026
7.0018 2.43 530 8.1745
7.4544 2.45 535 8.1465
7.8701 2.48 540 8.1183
7.2614 2.5 545 8.0897
6.9922 2.52 550 8.0616
7.1671 2.55 555 8.0342
7.7866 2.57 560 8.0062
6.9815 2.59 565 7.9786
6.9534 2.61 570 7.9514
7.2225 2.64 575 7.9251
7.1113 2.66 580 7.8986
6.7271 2.68 585 7.8728
7.132 2.71 590 7.8475
6.8046 2.73 595 7.8227
7.3063 2.75 600 7.7977
6.8367 2.78 605 7.7724
7.161 2.8 610 7.7475
6.6636 2.82 615 7.7231
7.3229 2.84 620 7.6984
6.6655 2.87 625 7.6743
6.8593 2.89 630 7.6502
6.8838 2.91 635 7.6263
7.0462 2.94 640 7.6031
6.7336 2.96 645 7.5800
6.5167 2.98 650 7.5580
6.6102 3.0 655 7.5359
6.8039 3.03 660 7.5140
7.1668 3.05 665 7.4918
6.6394 3.07 670 7.4694
6.8593 3.1 675 7.4473
6.4022 3.12 680 7.4258
6.9173 3.14 685 7.4050
6.2071 3.17 690 7.3850
6.512 3.19 695 7.3654
6.6548 3.21 700 7.3459
6.7666 3.23 705 7.3263
6.3916 3.26 710 7.3066
6.7645 3.28 715 7.2874
6.5965 3.3 720 7.2679
6.5361 3.33 725 7.2490
6.8693 3.35 730 7.2295
6.3229 3.37 735 7.2106
6.7505 3.39 740 7.1919
6.4917 3.42 745 7.1739
6.5649 3.44 750 7.1566
6.5177 3.46 755 7.1392
6.6282 3.49 760 7.1219
6.5035 3.51 765 7.1051
6.5631 3.53 770 7.0880
6.4593 3.56 775 7.0715
6.5314 3.58 780 7.0554
6.2695 3.6 785 7.0400
6.4792 3.62 790 7.0249
6.7222 3.65 795 7.0091
6.4972 3.67 800 6.9931
6.3063 3.69 805 6.9776
6.1834 3.72 810 6.9630
6.3814 3.74 815 6.9485
6.3444 3.76 820 6.9339
6.3784 3.78 825 6.9195
6.4047 3.81 830 6.9052
6.2368 3.83 835 6.8916
6.1245 3.85 840 6.8784
6.3089 3.88 845 6.8657
6.3674 3.9 850 6.8526
6.4337 3.92 855 6.8393
6.2115 3.94 860 6.8270
6.2734 3.97 865 6.8145
6.2301 3.99 870 6.8023
6.0973 4.01 875 6.7905
6.2143 4.04 880 6.7785
6.4512 4.06 885 6.7665
6.1737 4.08 890 6.7545
6.3221 4.11 895 6.7427
6.2879 4.13 900 6.7313
5.9436 4.15 905 6.7214
6.1258 4.17 910 6.7126
6.2819 4.2 915 6.7031
6.1344 4.22 920 6.6934
6.3769 4.24 925 6.6833
6.3609 4.27 930 6.6731
5.9827 4.29 935 6.6632
6.039 4.31 940 6.6541
6.0012 4.33 945 6.6451
6.0147 4.36 950 6.6362
5.8187 4.38 955 6.6275
5.9193 4.4 960 6.6191
6.28 4.43 965 6.6115
6.2678 4.45 970 6.6027
6.0973 4.47 975 6.5940
6.0822 4.5 980 6.5855
6.1009 4.52 985 6.5775
6.1271 4.54 990 6.5701
6.1592 4.56 995 6.5623
6.1096 4.59 1000 6.5551
5.9785 4.61 1005 6.5481
6.3988 4.63 1010 6.5409
6.0417 4.66 1015 6.5335
6.1195 4.68 1020 6.5261
6.0588 4.7 1025 6.5189
6.1183 4.72 1030 6.5121
5.9251 4.75 1035 6.5057
5.9547 4.77 1040 6.5001
6.0658 4.79 1045 6.4946
6.1259 4.82 1050 6.4889
6.0679 4.84 1055 6.4828
6.0607 4.86 1060 6.4769
5.9526 4.89 1065 6.4715
6.0828 4.91 1070 6.4658
5.9547 4.93 1075 6.4605
6.1024 4.95 1080 6.4551
5.9813 4.98 1085 6.4495
5.8972 5.0 1090 6.4440
5.7935 5.02 1095 6.4390
5.9187 5.05 1100 6.4349
5.9726 5.07 1105 6.4305
6.1756 5.09 1110 6.4254
5.8363 5.11 1115 6.4208
5.9026 5.14 1120 6.4165
6.07 5.16 1125 6.4123
5.963 5.18 1130 6.4077
5.8744 5.21 1135 6.4032
5.7556 5.23 1140 6.3994
5.9779 5.25 1145 6.3952
5.972 5.28 1150 6.3913
5.9615 5.3 1155 6.3873
5.996 5.32 1160 6.3834
5.8424 5.34 1165 6.3795
5.7417 5.37 1170 6.3762
5.9022 5.39 1175 6.3727
6.0184 5.41 1180 6.3693
5.749 5.44 1185 6.3659
5.773 5.46 1190 6.3631
6.0517 5.48 1195 6.3601
5.7407 5.5 1200 6.3573
5.9687 5.53 1205 6.3549
5.9979 5.55 1210 6.3518
6.1084 5.57 1215 6.3482
5.8697 5.6 1220 6.3447
6.0638 5.62 1225 6.3409
6.118 5.64 1230 6.3371
5.7951 5.67 1235 6.3334
5.7953 5.69 1240 6.3302
5.9258 5.71 1245 6.3272
6.0077 5.73 1250 6.3240
5.7704 5.76 1255 6.3209
5.8541 5.78 1260 6.3181
5.9699 5.8 1265 6.3153
5.8741 5.83 1270 6.3126
5.917 5.85 1275 6.3100
5.9787 5.87 1280 6.3070
5.9342 5.89 1285 6.3044
6.0153 5.92 1290 6.3018
5.9102 5.94 1295 6.2993
5.8239 5.96 1300 6.2970
5.8519 5.99 1305 6.2946
5.7885 6.01 1310 6.2925
5.7097 6.03 1315 6.2907
5.8986 6.06 1320 6.2885
5.9841 6.08 1325 6.2864
5.706 6.1 1330 6.2843
5.6936 6.12 1335 6.2827
5.8226 6.15 1340 6.2810
5.8315 6.17 1345 6.2791
5.9115 6.19 1350 6.2774
5.8574 6.22 1355 6.2754
5.6731 6.24 1360 6.2736
5.8267 6.26 1365 6.2719
5.9179 6.28 1370 6.2699
5.8623 6.31 1375 6.2682
5.5588 6.33 1380 6.2668
5.675 6.35 1385 6.2656
5.9247 6.38 1390 6.2642
5.9254 6.4 1395 6.2624
5.6931 6.42 1400 6.2608
5.872 6.44 1405 6.2593
5.9024 6.47 1410 6.2574
5.8604 6.49 1415 6.2557
5.7363 6.51 1420 6.2541
5.7869 6.54 1425 6.2528
6.0195 6.56 1430 6.2511
5.8393 6.58 1435 6.2493
5.7697 6.61 1440 6.2476
5.9471 6.63 1445 6.2460
5.9015 6.65 1450 6.2440
5.9454 6.67 1455 6.2419
5.9572 6.7 1460 6.2399
5.8503 6.72 1465 6.2381
5.8685 6.74 1470 6.2361
5.9132 6.77 1475 6.2344
6.0508 6.79 1480 6.2325
5.7752 6.81 1485 6.2307
5.7491 6.83 1490 6.2292
5.8327 6.86 1495 6.2279
5.8021 6.88 1500 6.2266
5.909 6.9 1505 6.2253
5.7635 6.93 1510 6.2237
5.7958 6.95 1515 6.2225
5.7834 6.97 1520 6.2212
5.8064 7.0 1525 6.2202
5.7643 7.02 1530 6.2191
5.7698 7.04 1535 6.2181
5.947 7.06 1540 6.2168
5.651 7.09 1545 6.2156
5.7821 7.11 1550 6.2144
5.9321 7.13 1555 6.2133
5.7556 7.16 1560 6.2122
5.9326 7.18 1565 6.2109
5.8153 7.2 1570 6.2098
5.8886 7.22 1575 6.2086
5.791 7.25 1580 6.2075
5.6872 7.27 1585 6.2066
5.8454 7.29 1590 6.2054
5.6718 7.32 1595 6.2045
5.94 7.34 1600 6.2034
5.7839 7.36 1605 6.2023
5.7479 7.39 1610 6.2014
5.7667 7.41 1615 6.2004
5.6903 7.43 1620 6.1996
5.7733 7.45 1625 6.1988
5.7689 7.48 1630 6.1978
5.6635 7.5 1635 6.1972
5.6859 7.52 1640 6.1965
5.9551 7.55 1645 6.1955
5.9198 7.57 1650 6.1945
5.8671 7.59 1655 6.1935
5.8787 7.61 1660 6.1926
5.672 7.64 1665 6.1916
5.6778 7.66 1670 6.1908
5.7932 7.68 1675 6.1901
5.7728 7.71 1680 6.1893
5.7485 7.73 1685 6.1885
5.7004 7.75 1690 6.1878
5.8689 7.78 1695 6.1871
5.8178 7.8 1700 6.1862
5.7805 7.82 1705 6.1855
5.6899 7.84 1710 6.1847
5.7139 7.87 1715 6.1841
5.8343 7.89 1720 6.1834
5.617 7.91 1725 6.1828
5.6653 7.94 1730 6.1822
5.7244 7.96 1735 6.1817
5.7212 7.98 1740 6.1811
5.8714 8.0 1745 6.1806
5.7405 8.03 1750 6.1798
5.9066 8.05 1755 6.1792
5.8379 8.07 1760 6.1786
5.8899 8.1 1765 6.1778
5.835 8.12 1770 6.1770
5.691 8.14 1775 6.1764
5.9066 8.17 1780 6.1758
5.7688 8.19 1785 6.1751
5.7538 8.21 1790 6.1746
5.6364 8.23 1795 6.1740
5.8411 8.26 1800 6.1734
5.7645 8.28 1805 6.1729
5.8873 8.3 1810 6.1723
5.5752 8.33 1815 6.1718
5.8784 8.35 1820 6.1712
5.7117 8.37 1825 6.1710
5.8186 8.39 1830 6.1704
5.6907 8.42 1835 6.1699
5.7 8.44 1840 6.1694
5.5417 8.46 1845 6.1692
5.8637 8.49 1850 6.1687
5.7281 8.51 1855 6.1682
5.6528 8.53 1860 6.1677
5.7258 8.56 1865 6.1674
5.7621 8.58 1870 6.1669
5.7232 8.6 1875 6.1666
5.5538 8.62 1880 6.1661
5.7917 8.65 1885 6.1658
5.8579 8.67 1890 6.1654
5.6824 8.69 1895 6.1649
5.7336 8.72 1900 6.1646
5.7791 8.74 1905 6.1641
5.5699 8.76 1910 6.1638
5.7826 8.78 1915 6.1634
5.6718 8.81 1920 6.1632
5.829 8.83 1925 6.1629
5.5786 8.85 1930 6.1625
5.7453 8.88 1935 6.1622
5.6309 8.9 1940 6.1620
5.7146 8.92 1945 6.1617
5.7131 8.94 1950 6.1614
5.7432 8.97 1955 6.1609
5.6304 8.99 1960 6.1607
5.6925 9.01 1965 6.1605
5.7406 9.04 1970 6.1601
5.6347 9.06 1975 6.1600
5.6896 9.08 1980 6.1597
5.6159 9.11 1985 6.1594
5.9093 9.13 1990 6.1593
5.7172 9.15 1995 6.1590
5.7223 9.17 2000 6.1587
5.6943 9.2 2005 6.1586
5.7278 9.22 2010 6.1585
5.6541 9.24 2015 6.1583
5.8852 9.27 2020 6.1580
5.8833 9.29 2025 6.1579
5.6182 9.31 2030 6.1577
5.7419 9.33 2035 6.1575
5.8911 9.36 2040 6.1572
5.6314 9.38 2045 6.1571
5.714 9.4 2050 6.1568
5.7446 9.43 2055 6.1566
5.7887 9.45 2060 6.1565
5.8779 9.47 2065 6.1563
5.7857 9.5 2070 6.1561
5.8314 9.52 2075 6.1560
5.584 9.54 2080 6.1558
5.6878 9.56 2085 6.1556
5.9123 9.59 2090 6.1555
5.7777 9.61 2095 6.1554
5.8798 9.63 2100 6.1554
5.7343 9.66 2105 6.1552
5.6734 9.68 2110 6.1550
5.6331 9.7 2115 6.1550
5.5947 9.72 2120 6.1550
5.8934 9.75 2125 6.1549
5.6424 9.77 2130 6.1548
5.4537 9.79 2135 6.1548
5.799 9.82 2140 6.1547
5.5778 9.84 2145 6.1546
5.6188 9.86 2150 6.1546
5.8389 9.89 2155 6.1545
5.7505 9.91 2160 6.1544
5.7237 9.93 2165 6.1544
5.7 9.95 2170 6.1544
5.7322 9.98 2175 6.1544
5.6562 10.0 2180 6.1544

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1