Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,142 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model:
|
| 3 |
+
- huihui-ai/gemma-3-1b-it-abliterated
|
| 4 |
+
tags:
|
| 5 |
+
- text-generation-inference
|
| 6 |
+
- transformers
|
| 7 |
+
- unsloth
|
| 8 |
+
- gemma3_text
|
| 9 |
+
license: apache-2.0
|
| 10 |
+
language:
|
| 11 |
+
- en
|
| 12 |
+
datasets:
|
| 13 |
+
- huihui-ai/Guilherme34_uncensor
|
| 14 |
+
---
|
| 15 |
+
|
| 16 |
+
# huihui-ai/gemma-3-1b-it-abliterated-GRPO
|
| 17 |
+
|
| 18 |
+
- **Developed by:** huihui-ai
|
| 19 |
+
- **License:** apache-2.0
|
| 20 |
+
- **Finetuned from model :** huihui-ai/gemma-3-1b-it-abliterated(https://huggingface.co/huihui-ai/gemma-3-1b-it-abliterated)
|
| 21 |
+
|
| 22 |
+
This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
| 23 |
+
|
| 24 |
+
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
| 25 |
+
|
| 26 |
+
## Use with transformers
|
| 27 |
+
|
| 28 |
+
```
|
| 29 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextStreamer
|
| 30 |
+
import torch
|
| 31 |
+
import os
|
| 32 |
+
import signal
|
| 33 |
+
|
| 34 |
+
cpu_count = os.cpu_count()
|
| 35 |
+
print(f"Number of CPU cores in the system: {cpu_count}")
|
| 36 |
+
half_cpu_count = cpu_count // 2
|
| 37 |
+
os.environ["MKL_NUM_THREADS"] = str(half_cpu_count)
|
| 38 |
+
os.environ["OMP_NUM_THREADS"] = str(half_cpu_count)
|
| 39 |
+
torch.set_num_threads(half_cpu_count)
|
| 40 |
+
|
| 41 |
+
print(f"PyTorch threads: {torch.get_num_threads()}")
|
| 42 |
+
print(f"MKL threads: {os.getenv('MKL_NUM_THREADS')}")
|
| 43 |
+
print(f"OMP threads: {os.getenv('OMP_NUM_THREADS')}")
|
| 44 |
+
|
| 45 |
+
# Load the model and tokenizer
|
| 46 |
+
NEW_MODEL_ID = "huihui-ai/gemma-3-1b-it-abliterated-GRPO"
|
| 47 |
+
print(f"Load Model {NEW_MODEL_ID} ... ")
|
| 48 |
+
quant_config_4 = BitsAndBytesConfig(
|
| 49 |
+
load_in_4bit=True,
|
| 50 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
| 51 |
+
bnb_4bit_use_double_quant=True,
|
| 52 |
+
llm_int8_enable_fp32_cpu_offload=True,
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 56 |
+
NEW_MODEL_ID,
|
| 57 |
+
device_map="auto",
|
| 58 |
+
trust_remote_code=True,
|
| 59 |
+
#quantization_config=quant_config_4,
|
| 60 |
+
torch_dtype=torch.bfloat16
|
| 61 |
+
)
|
| 62 |
+
tokenizer = AutoTokenizer.from_pretrained(NEW_MODEL_ID, trust_remote_code=True)
|
| 63 |
+
if tokenizer.pad_token is None:
|
| 64 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 65 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 66 |
+
|
| 67 |
+
initial_messages = [{"role": "system", "content": "You are a helpful assistant."}]
|
| 68 |
+
messages = initial_messages.copy()
|
| 69 |
+
|
| 70 |
+
class CustomTextStreamer(TextStreamer):
|
| 71 |
+
def __init__(self, tokenizer, skip_prompt=True, skip_special_tokens=True):
|
| 72 |
+
super().__init__(tokenizer, skip_prompt=skip_prompt, skip_special_tokens=skip_special_tokens)
|
| 73 |
+
self.generated_text = ""
|
| 74 |
+
self.stop_flag = False
|
| 75 |
+
|
| 76 |
+
def on_finalized_text(self, text: str, stream_end: bool = False):
|
| 77 |
+
self.generated_text += text
|
| 78 |
+
print(text, end="", flush=True)
|
| 79 |
+
if self.stop_flag:
|
| 80 |
+
raise StopIteration
|
| 81 |
+
|
| 82 |
+
def stop_generation(self):
|
| 83 |
+
self.stop_flag = True
|
| 84 |
+
|
| 85 |
+
def generate_stream(model, tokenizer, messages, max_new_tokens):
|
| 86 |
+
input_ids = tokenizer.apply_chat_template(
|
| 87 |
+
messages,
|
| 88 |
+
tokenize=True,
|
| 89 |
+
add_generation_prompt=True,
|
| 90 |
+
return_tensors="pt"
|
| 91 |
+
)
|
| 92 |
+
attention_mask = torch.ones_like(input_ids, dtype=torch.long)
|
| 93 |
+
tokens = input_ids.to(model.device)
|
| 94 |
+
attention_mask = attention_mask.to(model.device)
|
| 95 |
+
|
| 96 |
+
streamer = CustomTextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 97 |
+
|
| 98 |
+
def signal_handler(sig, frame):
|
| 99 |
+
streamer.stop_generation()
|
| 100 |
+
print("\n[Generation stopped by user with Ctrl+C]")
|
| 101 |
+
|
| 102 |
+
signal.signal(signal.SIGINT, signal_handler)
|
| 103 |
+
|
| 104 |
+
print("Response: ", end="", flush=True)
|
| 105 |
+
try:
|
| 106 |
+
generated_ids = model.generate(
|
| 107 |
+
tokens,
|
| 108 |
+
attention_mask=attention_mask,
|
| 109 |
+
use_cache=False,
|
| 110 |
+
max_new_tokens=max_new_tokens,
|
| 111 |
+
do_sample=True,
|
| 112 |
+
pad_token_id=tokenizer.pad_token_id,
|
| 113 |
+
streamer=streamer
|
| 114 |
+
)
|
| 115 |
+
del generated_ids
|
| 116 |
+
except StopIteration:
|
| 117 |
+
print("\n[Stopped by user]")
|
| 118 |
+
|
| 119 |
+
del input_ids, attention_mask
|
| 120 |
+
torch.cuda.empty_cache()
|
| 121 |
+
signal.signal(signal.SIGINT, signal.SIG_DFL)
|
| 122 |
+
|
| 123 |
+
return streamer.generated_text, streamer.stop_flag
|
| 124 |
+
|
| 125 |
+
while True:
|
| 126 |
+
user_input = input("User: ").strip()
|
| 127 |
+
if user_input.lower() == "/exit":
|
| 128 |
+
print("Exiting chat.")
|
| 129 |
+
break
|
| 130 |
+
if user_input.lower() == "/clear":
|
| 131 |
+
messages = initial_messages.copy()
|
| 132 |
+
print("Chat history cleared. Starting a new conversation.")
|
| 133 |
+
continue
|
| 134 |
+
if not user_input:
|
| 135 |
+
print("Input cannot be empty. Please enter something.")
|
| 136 |
+
continue
|
| 137 |
+
messages.append({"role": "user", "content": user_input})
|
| 138 |
+
response, stop_flag = generate_stream(model, tokenizer, messages, 8192)
|
| 139 |
+
if stop_flag:
|
| 140 |
+
continue
|
| 141 |
+
messages.append({"role": "assistant", "content": response})
|
| 142 |
+
```
|