huihui-ai commited on
Commit
74cf2e8
·
verified ·
1 Parent(s): c58e830

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -180
README.md CHANGED
@@ -9,192 +9,23 @@ tags:
9
  - lg-ai
10
  - exaone
11
  - exaone-3.5
 
 
 
 
12
  pipeline_tag: text-generation
13
  library_name: transformers
14
  ---
15
 
16
- <p align="center">
17
- <img src="assets/EXAONE_Symbol+BI_3d.png", width="300", style="margin: 40 auto;">
18
- <br>
19
 
20
- # EXAONE-3.5-32B-Instruct
21
 
22
- ## Introduction
 
23
 
24
- We introduce EXAONE 3.5, a collection of instruction-tuned bilingual (English and Korean) generative models ranging from 2.4B to 32B parameters, developed and released by LG AI Research. EXAONE 3.5 language models include: 1) **2.4B model** optimized for deployment on small or resource-constrained devices, 2) **7.8B model** matching the size of its predecessor but offering improved performance, and 3) **32B model** delivering powerful performance. All models support long-context processing of up to 32K tokens. Each model demonstrates state-of-the-art performance in real-world use cases and long-context understanding, while remaining competitive in general domains compared to recently released models of similar sizes.
25
 
26
- For more details, please refer to our [technical report](https://arxiv.org/abs/2412.04862), [blog](https://www.lgresearch.ai/blog/view?seq=507) and [GitHub](https://github.com/LG-AI-EXAONE/EXAONE-3.5).
27
-
28
- This repository contains the instruction-tuned 32B language model with the following features:
29
-
30
- - Number of Parameters (without embeddings): 30.95B
31
- - Number of Layers: 64
32
- - Number of Attention Heads: GQA with 40 Q-heads and 8 KV-heads
33
- - Vocab Size: 102,400
34
- - Context Length: 32,768 tokens
35
-
36
- ## Quickstart
37
-
38
- We recommend to use `transformers` v4.43 or later.
39
-
40
- Here is the code snippet to run conversational inference with the model:
41
-
42
- ```python
43
- import torch
44
- from transformers import AutoModelForCausalLM, AutoTokenizer
45
-
46
- model_name = "LGAI-EXAONE/EXAONE-3.5-32B-Instruct"
47
-
48
- model = AutoModelForCausalLM.from_pretrained(
49
- model_name,
50
- torch_dtype=torch.bfloat16,
51
- trust_remote_code=True,
52
- device_map="auto"
53
- )
54
- tokenizer = AutoTokenizer.from_pretrained(model_name)
55
-
56
- # Choose your prompt
57
- prompt = "Explain how wonderful you are" # English example
58
- prompt = "스스로를 자랑해 봐" # Korean example
59
-
60
- messages = [
61
- {"role": "system",
62
- "content": "You are EXAONE model from LG AI Research, a helpful assistant."},
63
- {"role": "user", "content": prompt}
64
- ]
65
- input_ids = tokenizer.apply_chat_template(
66
- messages,
67
- tokenize=True,
68
- add_generation_prompt=True,
69
- return_tensors="pt"
70
- )
71
-
72
- output = model.generate(
73
- input_ids.to("cuda"),
74
- eos_token_id=tokenizer.eos_token_id,
75
- max_new_tokens=128,
76
- do_sample=False,
77
- )
78
- print(tokenizer.decode(output[0]))
79
  ```
80
-
81
- > ### Note
82
- > The EXAONE 3.5 instruction-tuned language models were trained to utilize the system prompt,
83
- > so we highly recommend using the system prompts provided in the code snippet above.
84
-
85
- ## Evaluation
86
-
87
- The following table shows the evaluation results of real-world use cases. The full evaluation results can be found in the [technical report](https://arxiv.org/abs/2412.04862).
88
-
89
- <table>
90
- <tr>
91
- <th>Models</th>
92
- <th>MT-Bench</th>
93
- <th>LiveBench</th>
94
- <th>Arena-Hard</th>
95
- <th>AlpacaEval</th>
96
- <th>IFEval</th>
97
- <th>KoMT-Bench[1]</th>
98
- <th>LogicKor</th>
99
- </tr>
100
- <tr>
101
- <td>EXAONE 3.5 32B</td>
102
- <td align="center"><strong>8.51</strong></td>
103
- <td align="center">43.0</td>
104
- <td align="center"><strong>78.6</strong></td>
105
- <td align="center"><strong>60.6</strong></td>
106
- <td align="center"><strong>81.7</strong></td>
107
- <td align="center"><strong>8.05</strong></td>
108
- <td align="center"><strong>9.06</strong></td>
109
- </tr>
110
- <tr>
111
- <td>Qwen 2.5 32B</td>
112
- <td align="center">8.49</td>
113
- <td align="center"><strong>50.6</strong></td>
114
- <td align="center">67.0</td>
115
- <td align="center">41.0</td>
116
- <td align="center">78.7</td>
117
- <td align="center">7.75</td>
118
- <td align="center">8.89</td>
119
- </tr>
120
- <tr>
121
- <td>C4AI Command R 32B</td>
122
- <td align="center">7.38</td>
123
- <td align="center">29.7</td>
124
- <td align="center">17.0</td>
125
- <td align="center">25.9</td>
126
- <td align="center">26.1</td>
127
- <td align="center">6.72</td>
128
- <td align="center">8.24</td>
129
- </tr>
130
- <tr>
131
- <td>Gemma 2 27B</td>
132
- <td align="center">8.28</td>
133
- <td align="center">40.0</td>
134
- <td align="center">57.5</td>
135
- <td align="center">52.2</td>
136
- <td align="center">59.7</td>
137
- <td align="center">7.19</td>
138
- <td align="center">8.56</td>
139
- </tr>
140
- <tr>
141
- <td>Yi 1.5 34B</td>
142
- <td align="center">7.64</td>
143
- <td align="center">26.2</td>
144
- <td align="center">23.1</td>
145
- <td align="center">34.8</td>
146
- <td align="center">55.5</td>
147
- <td align="center">4.88</td>
148
- <td align="center">6.33</td>
149
- </tr>
150
- </table>
151
-
152
- - [1] KoMT-Bench is a dataset created by translating MT-Bench into Korean; see [README](https://github.com/LG-AI-EXAONE/KoMT-Bench) for more details.
153
-
154
- ## Deployment
155
-
156
- EXAONE 3.5 models can be inferred in the various frameworks, such as:
157
- - `TensorRT-LLM`
158
- - `vLLM`
159
- - `SGLang`
160
- - `llama.cpp`
161
- - `Ollama`
162
-
163
- Please refer to our [EXAONE 3.5 GitHub](https://github.com/LG-AI-EXAONE/EXAONE-3.5) for more details about the inference frameworks.
164
-
165
- ## Quantization
166
-
167
- We provide the pre-quantized EXAONE 3.5 models with **AWQ** and several quantization types in **GGUF** format.
168
- Please refer to our [EXAONE 3.5 collection](https://huggingface.co/collections/LGAI-EXAONE/exaone-35-674d0e1bb3dcd2ab6f39dbb4) to find corresponding quantized models.
169
-
170
- ## Limitation
171
-
172
- The EXAONE language model has certain limitations and may occasionally generate inappropriate responses. The language model generates responses based on the output probability of tokens, and it is determined during learning from training data. While we have made every effort to exclude personal, harmful, and biased information from the training data, some problematic content may still be included, potentially leading to undesirable responses. Please note that the text generated by EXAONE language model does not reflects the views of LG AI Research.
173
-
174
- - Inappropriate answers may be generated, which contain personal, harmful or other inappropriate information.
175
- - Biased responses may be generated, which are associated with age, gender, race, and so on.
176
- - The generated responses rely heavily on statistics from the training data, which can result in the generation of
177
- semantically or syntactically incorrect sentences.
178
- - Since the model does not reflect the latest information, the responses may be false or contradictory.
179
-
180
- LG AI Research strives to reduce potential risks that may arise from EXAONE language models. Users are not allowed
181
- to engage in any malicious activities (e.g., keying in illegal information) that may induce the creation of inappropriate
182
- outputs violating LG AI’s ethical principles when using EXAONE language models.
183
-
184
- ## License
185
-
186
- The model is licensed under [EXAONE AI Model License Agreement 1.1 - NC](./LICENSE)
187
-
188
- ## Citation
189
-
190
- ```
191
- @article{exaone-3.5,
192
- title={EXAONE 3.5: Series of Large Language Models for Real-world Use Cases},
193
- author={LG AI Research},
194
- journal={arXiv preprint arXiv:https://arxiv.org/abs/2412.04862},
195
- year={2024}
196
- }
197
- ```
198
-
199
- ## Contact
200
- LG AI Research Technical Support: contact_us@lgresearch.ai
 
9
  - lg-ai
10
  - exaone
11
  - exaone-3.5
12
+ - abliterated
13
+ - uncensored
14
+ base_model:
15
+ - LGAI-EXAONE/EXAONE-3.5-32B-Instruct
16
  pipeline_tag: text-generation
17
  library_name: transformers
18
  ---
19
 
20
+ # huihui-ai/EXAONE-3.5-32B-Instruct-abliterated
 
 
21
 
 
22
 
23
+ This is an uncensored version of [LGAI-EXAONE/EXAONE-3.5-32B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.5-32B-Instruct) created with abliteration (see [remove-refusals-with-transformers](https://github.com/Sumandora/remove-refusals-with-transformers) to know more about it).
24
+ This is a crude, proof-of-concept implementation to remove refusals from an LLM model without using TransformerLens.
25
 
26
+ ## Use with ollama
27
 
28
+ You can use [huihui_ai/exaone3.5-abliterated](https://ollama.com/huihui_ai/exaone3.5-abliterated) directly,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
  ```
30
+ ollama run huihui_ai/exaone3.5-abliterated:32b
31
+ ```