Update README.md
Browse files
README.md
CHANGED
@@ -9,192 +9,23 @@ tags:
|
|
9 |
- lg-ai
|
10 |
- exaone
|
11 |
- exaone-3.5
|
|
|
|
|
|
|
|
|
12 |
pipeline_tag: text-generation
|
13 |
library_name: transformers
|
14 |
---
|
15 |
|
16 |
-
|
17 |
-
<img src="assets/EXAONE_Symbol+BI_3d.png", width="300", style="margin: 40 auto;">
|
18 |
-
<br>
|
19 |
|
20 |
-
# EXAONE-3.5-32B-Instruct
|
21 |
|
22 |
-
|
|
|
23 |
|
24 |
-
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
This repository contains the instruction-tuned 32B language model with the following features:
|
29 |
-
|
30 |
-
- Number of Parameters (without embeddings): 30.95B
|
31 |
-
- Number of Layers: 64
|
32 |
-
- Number of Attention Heads: GQA with 40 Q-heads and 8 KV-heads
|
33 |
-
- Vocab Size: 102,400
|
34 |
-
- Context Length: 32,768 tokens
|
35 |
-
|
36 |
-
## Quickstart
|
37 |
-
|
38 |
-
We recommend to use `transformers` v4.43 or later.
|
39 |
-
|
40 |
-
Here is the code snippet to run conversational inference with the model:
|
41 |
-
|
42 |
-
```python
|
43 |
-
import torch
|
44 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
45 |
-
|
46 |
-
model_name = "LGAI-EXAONE/EXAONE-3.5-32B-Instruct"
|
47 |
-
|
48 |
-
model = AutoModelForCausalLM.from_pretrained(
|
49 |
-
model_name,
|
50 |
-
torch_dtype=torch.bfloat16,
|
51 |
-
trust_remote_code=True,
|
52 |
-
device_map="auto"
|
53 |
-
)
|
54 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
55 |
-
|
56 |
-
# Choose your prompt
|
57 |
-
prompt = "Explain how wonderful you are" # English example
|
58 |
-
prompt = "스스로를 자랑해 봐" # Korean example
|
59 |
-
|
60 |
-
messages = [
|
61 |
-
{"role": "system",
|
62 |
-
"content": "You are EXAONE model from LG AI Research, a helpful assistant."},
|
63 |
-
{"role": "user", "content": prompt}
|
64 |
-
]
|
65 |
-
input_ids = tokenizer.apply_chat_template(
|
66 |
-
messages,
|
67 |
-
tokenize=True,
|
68 |
-
add_generation_prompt=True,
|
69 |
-
return_tensors="pt"
|
70 |
-
)
|
71 |
-
|
72 |
-
output = model.generate(
|
73 |
-
input_ids.to("cuda"),
|
74 |
-
eos_token_id=tokenizer.eos_token_id,
|
75 |
-
max_new_tokens=128,
|
76 |
-
do_sample=False,
|
77 |
-
)
|
78 |
-
print(tokenizer.decode(output[0]))
|
79 |
```
|
80 |
-
|
81 |
-
|
82 |
-
> The EXAONE 3.5 instruction-tuned language models were trained to utilize the system prompt,
|
83 |
-
> so we highly recommend using the system prompts provided in the code snippet above.
|
84 |
-
|
85 |
-
## Evaluation
|
86 |
-
|
87 |
-
The following table shows the evaluation results of real-world use cases. The full evaluation results can be found in the [technical report](https://arxiv.org/abs/2412.04862).
|
88 |
-
|
89 |
-
<table>
|
90 |
-
<tr>
|
91 |
-
<th>Models</th>
|
92 |
-
<th>MT-Bench</th>
|
93 |
-
<th>LiveBench</th>
|
94 |
-
<th>Arena-Hard</th>
|
95 |
-
<th>AlpacaEval</th>
|
96 |
-
<th>IFEval</th>
|
97 |
-
<th>KoMT-Bench[1]</th>
|
98 |
-
<th>LogicKor</th>
|
99 |
-
</tr>
|
100 |
-
<tr>
|
101 |
-
<td>EXAONE 3.5 32B</td>
|
102 |
-
<td align="center"><strong>8.51</strong></td>
|
103 |
-
<td align="center">43.0</td>
|
104 |
-
<td align="center"><strong>78.6</strong></td>
|
105 |
-
<td align="center"><strong>60.6</strong></td>
|
106 |
-
<td align="center"><strong>81.7</strong></td>
|
107 |
-
<td align="center"><strong>8.05</strong></td>
|
108 |
-
<td align="center"><strong>9.06</strong></td>
|
109 |
-
</tr>
|
110 |
-
<tr>
|
111 |
-
<td>Qwen 2.5 32B</td>
|
112 |
-
<td align="center">8.49</td>
|
113 |
-
<td align="center"><strong>50.6</strong></td>
|
114 |
-
<td align="center">67.0</td>
|
115 |
-
<td align="center">41.0</td>
|
116 |
-
<td align="center">78.7</td>
|
117 |
-
<td align="center">7.75</td>
|
118 |
-
<td align="center">8.89</td>
|
119 |
-
</tr>
|
120 |
-
<tr>
|
121 |
-
<td>C4AI Command R 32B</td>
|
122 |
-
<td align="center">7.38</td>
|
123 |
-
<td align="center">29.7</td>
|
124 |
-
<td align="center">17.0</td>
|
125 |
-
<td align="center">25.9</td>
|
126 |
-
<td align="center">26.1</td>
|
127 |
-
<td align="center">6.72</td>
|
128 |
-
<td align="center">8.24</td>
|
129 |
-
</tr>
|
130 |
-
<tr>
|
131 |
-
<td>Gemma 2 27B</td>
|
132 |
-
<td align="center">8.28</td>
|
133 |
-
<td align="center">40.0</td>
|
134 |
-
<td align="center">57.5</td>
|
135 |
-
<td align="center">52.2</td>
|
136 |
-
<td align="center">59.7</td>
|
137 |
-
<td align="center">7.19</td>
|
138 |
-
<td align="center">8.56</td>
|
139 |
-
</tr>
|
140 |
-
<tr>
|
141 |
-
<td>Yi 1.5 34B</td>
|
142 |
-
<td align="center">7.64</td>
|
143 |
-
<td align="center">26.2</td>
|
144 |
-
<td align="center">23.1</td>
|
145 |
-
<td align="center">34.8</td>
|
146 |
-
<td align="center">55.5</td>
|
147 |
-
<td align="center">4.88</td>
|
148 |
-
<td align="center">6.33</td>
|
149 |
-
</tr>
|
150 |
-
</table>
|
151 |
-
|
152 |
-
- [1] KoMT-Bench is a dataset created by translating MT-Bench into Korean; see [README](https://github.com/LG-AI-EXAONE/KoMT-Bench) for more details.
|
153 |
-
|
154 |
-
## Deployment
|
155 |
-
|
156 |
-
EXAONE 3.5 models can be inferred in the various frameworks, such as:
|
157 |
-
- `TensorRT-LLM`
|
158 |
-
- `vLLM`
|
159 |
-
- `SGLang`
|
160 |
-
- `llama.cpp`
|
161 |
-
- `Ollama`
|
162 |
-
|
163 |
-
Please refer to our [EXAONE 3.5 GitHub](https://github.com/LG-AI-EXAONE/EXAONE-3.5) for more details about the inference frameworks.
|
164 |
-
|
165 |
-
## Quantization
|
166 |
-
|
167 |
-
We provide the pre-quantized EXAONE 3.5 models with **AWQ** and several quantization types in **GGUF** format.
|
168 |
-
Please refer to our [EXAONE 3.5 collection](https://huggingface.co/collections/LGAI-EXAONE/exaone-35-674d0e1bb3dcd2ab6f39dbb4) to find corresponding quantized models.
|
169 |
-
|
170 |
-
## Limitation
|
171 |
-
|
172 |
-
The EXAONE language model has certain limitations and may occasionally generate inappropriate responses. The language model generates responses based on the output probability of tokens, and it is determined during learning from training data. While we have made every effort to exclude personal, harmful, and biased information from the training data, some problematic content may still be included, potentially leading to undesirable responses. Please note that the text generated by EXAONE language model does not reflects the views of LG AI Research.
|
173 |
-
|
174 |
-
- Inappropriate answers may be generated, which contain personal, harmful or other inappropriate information.
|
175 |
-
- Biased responses may be generated, which are associated with age, gender, race, and so on.
|
176 |
-
- The generated responses rely heavily on statistics from the training data, which can result in the generation of
|
177 |
-
semantically or syntactically incorrect sentences.
|
178 |
-
- Since the model does not reflect the latest information, the responses may be false or contradictory.
|
179 |
-
|
180 |
-
LG AI Research strives to reduce potential risks that may arise from EXAONE language models. Users are not allowed
|
181 |
-
to engage in any malicious activities (e.g., keying in illegal information) that may induce the creation of inappropriate
|
182 |
-
outputs violating LG AI’s ethical principles when using EXAONE language models.
|
183 |
-
|
184 |
-
## License
|
185 |
-
|
186 |
-
The model is licensed under [EXAONE AI Model License Agreement 1.1 - NC](./LICENSE)
|
187 |
-
|
188 |
-
## Citation
|
189 |
-
|
190 |
-
```
|
191 |
-
@article{exaone-3.5,
|
192 |
-
title={EXAONE 3.5: Series of Large Language Models for Real-world Use Cases},
|
193 |
-
author={LG AI Research},
|
194 |
-
journal={arXiv preprint arXiv:https://arxiv.org/abs/2412.04862},
|
195 |
-
year={2024}
|
196 |
-
}
|
197 |
-
```
|
198 |
-
|
199 |
-
## Contact
|
200 |
-
LG AI Research Technical Support: contact_us@lgresearch.ai
|
|
|
9 |
- lg-ai
|
10 |
- exaone
|
11 |
- exaone-3.5
|
12 |
+
- abliterated
|
13 |
+
- uncensored
|
14 |
+
base_model:
|
15 |
+
- LGAI-EXAONE/EXAONE-3.5-32B-Instruct
|
16 |
pipeline_tag: text-generation
|
17 |
library_name: transformers
|
18 |
---
|
19 |
|
20 |
+
# huihui-ai/EXAONE-3.5-32B-Instruct-abliterated
|
|
|
|
|
21 |
|
|
|
22 |
|
23 |
+
This is an uncensored version of [LGAI-EXAONE/EXAONE-3.5-32B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.5-32B-Instruct) created with abliteration (see [remove-refusals-with-transformers](https://github.com/Sumandora/remove-refusals-with-transformers) to know more about it).
|
24 |
+
This is a crude, proof-of-concept implementation to remove refusals from an LLM model without using TransformerLens.
|
25 |
|
26 |
+
## Use with ollama
|
27 |
|
28 |
+
You can use [huihui_ai/exaone3.5-abliterated](https://ollama.com/huihui_ai/exaone3.5-abliterated) directly,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
```
|
30 |
+
ollama run huihui_ai/exaone3.5-abliterated:32b
|
31 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|