hsyntemiz commited on
Commit
3b91fbe
1 Parent(s): bcc474a

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +106 -0
README.md ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imagefolder
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: turcoins-classifier
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: imagefolder
17
+ type: imagefolder
18
+ config: hsyntemiz--turcoins
19
+ split: test
20
+ args: hsyntemiz--turcoins
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.9548611111111112
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # turcoins-classifier
31
+
32
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.1763
35
+ - Accuracy: 0.9549
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 5e-05
55
+ - train_batch_size: 16
56
+ - eval_batch_size: 16
57
+ - seed: 42
58
+ - gradient_accumulation_steps: 4
59
+ - total_train_batch_size: 64
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 30
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 1.9277 | 1.0 | 146 | 1.9660 | 0.7726 |
70
+ | 1.6627 | 2.0 | 292 | 1.7154 | 0.7917 |
71
+ | 1.4071 | 2.99 | 438 | 1.4120 | 0.8079 |
72
+ | 1.09 | 4.0 | 585 | 1.1225 | 0.8362 |
73
+ | 0.8086 | 5.0 | 731 | 0.8917 | 0.8675 |
74
+ | 0.7636 | 6.0 | 877 | 0.7596 | 0.8709 |
75
+ | 0.611 | 6.99 | 1023 | 0.6493 | 0.8883 |
76
+ | 0.4605 | 8.0 | 1170 | 0.5899 | 0.8872 |
77
+ | 0.37 | 9.0 | 1316 | 0.4978 | 0.9045 |
78
+ | 0.3882 | 10.0 | 1462 | 0.4424 | 0.9132 |
79
+ | 0.3139 | 10.99 | 1608 | 0.3969 | 0.9115 |
80
+ | 0.3178 | 12.0 | 1755 | 0.3525 | 0.9294 |
81
+ | 0.2796 | 13.0 | 1901 | 0.3552 | 0.9161 |
82
+ | 0.2571 | 14.0 | 2047 | 0.3189 | 0.9265 |
83
+ | 0.2481 | 14.99 | 2193 | 0.2945 | 0.9358 |
84
+ | 0.1875 | 16.0 | 2340 | 0.2647 | 0.9392 |
85
+ | 0.1861 | 17.0 | 2486 | 0.2404 | 0.9410 |
86
+ | 0.1839 | 18.0 | 2632 | 0.2556 | 0.9421 |
87
+ | 0.173 | 18.99 | 2778 | 0.2387 | 0.9462 |
88
+ | 0.1837 | 20.0 | 2925 | 0.2049 | 0.9485 |
89
+ | 0.1724 | 21.0 | 3071 | 0.2065 | 0.9525 |
90
+ | 0.1399 | 22.0 | 3217 | 0.2089 | 0.9404 |
91
+ | 0.1696 | 22.99 | 3363 | 0.1957 | 0.9497 |
92
+ | 0.1405 | 24.0 | 3510 | 0.1848 | 0.9554 |
93
+ | 0.1009 | 25.0 | 3656 | 0.1912 | 0.9520 |
94
+ | 0.1126 | 26.0 | 3802 | 0.1717 | 0.9560 |
95
+ | 0.1336 | 26.99 | 3948 | 0.1699 | 0.9589 |
96
+ | 0.1046 | 28.0 | 4095 | 0.1600 | 0.9601 |
97
+ | 0.126 | 29.0 | 4241 | 0.1839 | 0.9520 |
98
+ | 0.0882 | 29.95 | 4380 | 0.1763 | 0.9549 |
99
+
100
+
101
+ ### Framework versions
102
+
103
+ - Transformers 4.28.1
104
+ - Pytorch 2.0.0+cu117
105
+ - Datasets 2.12.0
106
+ - Tokenizers 0.13.3