update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- imagefolder
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: turcoins-classifier
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Image Classification
|
14 |
+
type: image-classification
|
15 |
+
dataset:
|
16 |
+
name: imagefolder
|
17 |
+
type: imagefolder
|
18 |
+
config: hsyntemiz--turcoins
|
19 |
+
split: test
|
20 |
+
args: hsyntemiz--turcoins
|
21 |
+
metrics:
|
22 |
+
- name: Accuracy
|
23 |
+
type: accuracy
|
24 |
+
value: 0.9548611111111112
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# turcoins-classifier
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.1763
|
35 |
+
- Accuracy: 0.9549
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 5e-05
|
55 |
+
- train_batch_size: 16
|
56 |
+
- eval_batch_size: 16
|
57 |
+
- seed: 42
|
58 |
+
- gradient_accumulation_steps: 4
|
59 |
+
- total_train_batch_size: 64
|
60 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
+
- lr_scheduler_type: linear
|
62 |
+
- lr_scheduler_warmup_ratio: 0.1
|
63 |
+
- num_epochs: 30
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
+
| 1.9277 | 1.0 | 146 | 1.9660 | 0.7726 |
|
70 |
+
| 1.6627 | 2.0 | 292 | 1.7154 | 0.7917 |
|
71 |
+
| 1.4071 | 2.99 | 438 | 1.4120 | 0.8079 |
|
72 |
+
| 1.09 | 4.0 | 585 | 1.1225 | 0.8362 |
|
73 |
+
| 0.8086 | 5.0 | 731 | 0.8917 | 0.8675 |
|
74 |
+
| 0.7636 | 6.0 | 877 | 0.7596 | 0.8709 |
|
75 |
+
| 0.611 | 6.99 | 1023 | 0.6493 | 0.8883 |
|
76 |
+
| 0.4605 | 8.0 | 1170 | 0.5899 | 0.8872 |
|
77 |
+
| 0.37 | 9.0 | 1316 | 0.4978 | 0.9045 |
|
78 |
+
| 0.3882 | 10.0 | 1462 | 0.4424 | 0.9132 |
|
79 |
+
| 0.3139 | 10.99 | 1608 | 0.3969 | 0.9115 |
|
80 |
+
| 0.3178 | 12.0 | 1755 | 0.3525 | 0.9294 |
|
81 |
+
| 0.2796 | 13.0 | 1901 | 0.3552 | 0.9161 |
|
82 |
+
| 0.2571 | 14.0 | 2047 | 0.3189 | 0.9265 |
|
83 |
+
| 0.2481 | 14.99 | 2193 | 0.2945 | 0.9358 |
|
84 |
+
| 0.1875 | 16.0 | 2340 | 0.2647 | 0.9392 |
|
85 |
+
| 0.1861 | 17.0 | 2486 | 0.2404 | 0.9410 |
|
86 |
+
| 0.1839 | 18.0 | 2632 | 0.2556 | 0.9421 |
|
87 |
+
| 0.173 | 18.99 | 2778 | 0.2387 | 0.9462 |
|
88 |
+
| 0.1837 | 20.0 | 2925 | 0.2049 | 0.9485 |
|
89 |
+
| 0.1724 | 21.0 | 3071 | 0.2065 | 0.9525 |
|
90 |
+
| 0.1399 | 22.0 | 3217 | 0.2089 | 0.9404 |
|
91 |
+
| 0.1696 | 22.99 | 3363 | 0.1957 | 0.9497 |
|
92 |
+
| 0.1405 | 24.0 | 3510 | 0.1848 | 0.9554 |
|
93 |
+
| 0.1009 | 25.0 | 3656 | 0.1912 | 0.9520 |
|
94 |
+
| 0.1126 | 26.0 | 3802 | 0.1717 | 0.9560 |
|
95 |
+
| 0.1336 | 26.99 | 3948 | 0.1699 | 0.9589 |
|
96 |
+
| 0.1046 | 28.0 | 4095 | 0.1600 | 0.9601 |
|
97 |
+
| 0.126 | 29.0 | 4241 | 0.1839 | 0.9520 |
|
98 |
+
| 0.0882 | 29.95 | 4380 | 0.1763 | 0.9549 |
|
99 |
+
|
100 |
+
|
101 |
+
### Framework versions
|
102 |
+
|
103 |
+
- Transformers 4.28.1
|
104 |
+
- Pytorch 2.0.0+cu117
|
105 |
+
- Datasets 2.12.0
|
106 |
+
- Tokenizers 0.13.3
|