|
--- |
|
license: mit |
|
base_model: pyannote/segmentation-3.0 |
|
tags: |
|
- speaker-diarization |
|
- speaker-segmentation |
|
- generated_from_trainer |
|
datasets: |
|
- ArtFair/diarizers_dataset_70-15-15 |
|
model-index: |
|
- name: fine_tuned_segmentation-3.0_1e-5_32 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# fine_tuned_segmentation-3.0_1e-5_32 |
|
|
|
This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the ArtFair/diarizers_dataset_70-15-15 default dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4908 |
|
- Der: 0.3585 |
|
- False Alarm: 0.2041 |
|
- Missed Detection: 0.1214 |
|
- Confusion: 0.0330 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- num_epochs: 5.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:| |
|
| 0.621 | 1.0 | 929 | 0.5601 | 0.3774 | 0.2133 | 0.1279 | 0.0361 | |
|
| 0.5472 | 2.0 | 1858 | 0.5149 | 0.3680 | 0.2084 | 0.1254 | 0.0342 | |
|
| 0.5353 | 3.0 | 2787 | 0.4969 | 0.3615 | 0.2049 | 0.1234 | 0.0333 | |
|
| 0.517 | 4.0 | 3716 | 0.4919 | 0.3590 | 0.2042 | 0.1216 | 0.0331 | |
|
| 0.5217 | 5.0 | 4645 | 0.4908 | 0.3585 | 0.2041 | 0.1214 | 0.0330 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.2 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 2.17.0 |
|
- Tokenizers 0.15.2 |
|
|