hsarfraz's picture
Update README.md
2e23697 verified
---
license: mit
base_model: naver-clova-ix/donut-base
library_name: transformers
tags:
- donut
- parser
- irs
- tax
- document AI
- '1040'
pipeline_tag: image-text-to-text
---
# Donut - fine-tuned for US IRS Form 1040 (2023) data parsing and extraction
This donut model has been fine-tuned to parse and extract data from IRS (US) tax form 1040 (year 2023). It performs OCR and returns extracted data in JSON format using zero shot prompt.
## Model Details & Description
The base model is ['naver-clova-ix/donut-base'][base], the model is finetuned for data parsing and extraction. The added_tokens.json file lists all the labels that can be extracted.
For inference use image size width: 1536 px and height: 1536 px
# How to Get Started with the Model
Use the code below to get started with the model.
```python
from transformers import DonutProcessor, VisionEncoderDecoderModel
from PIL import Image
import torch
import re
model_name = 'hsarfraz/irs-tax-form-1040-2023-doc-parser'
processor = DonutProcessor.from_pretrained(model_name)
model = VisionEncoderDecoderModel.from_pretrained(model_name)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
model.eval()
image_name = 'replace with name of the form 1040 (2023) image file '
img = Image.open(image_name)
new_width = 1536
new_height = 1536
# resize input image to finetuned images size
img = img.resize((new_width, new_height), Image.LANCZOS)
pixel_values = processor(img.convert("RGB"), return_tensors="pt").pixel_values
pixel_values = pixel_values.to(device)
# prompt
task_prompt = "<s_cord-v2>"
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt")["input_ids"]
decoder_input_ids = decoder_input_ids.to(device)
outputs = model.generate(pixel_values,decoder_input_ids=decoder_input_ids,
max_length=model.decoder.config.max_position_embeddings,
early_stopping=True,
pad_token_id=processor.tokenizer.pad_token_id,
eos_token_id=processor.tokenizer.eos_token_id,
use_cache=True,
num_beams=1,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
return_dict_in_generate=True,
# output_scores=True,
)
sequence = processor.batch_decode(outputs.sequences)[0]
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
output_json = processor.token2json(sequence)
print('----------------------------------')
print('--- Parsed data in json format ---')
print('----------------------------------')
print(output_json)
```
# FAKE Synthetic Form 1040 (2023) for illustration purposes only
<div align="left">
<img width="800" alt="FAKE 1040 form for illustration purposes" src="https://huggingface.co/hsarfraz/irs-tax-form-1040-2023-doc-parser/resolve/main/fake_synthetic_form_1040_example.png">
</div>
# Example of json output (based on FAKE 1040 form)
```json
{
"lbl_0_03": "Michael Evans",
"lbl_0_04": "Caldwell",
"lbl_0_05": "741-52-5353",
"lbl_0_06": "None",
"lbl_0_07": "None",
"lbl_0_08": "None",
"lbl_0_09": "289 Blackwell Land Suite 380 New Tiffany, NH 07548",
"lbl_0_11": "East Amandaport",
"lbl_0_12": "VI",
"lbl_0_13": "47832",
"lbl_0_14": "None",
"lbl_0_15": "None",
"lbl_0_16": "25677",
"lbl_0_55": "385321.36",
"lbl_0_56": "None",
"lbl_0_57": "None",
"lbl_0_58": "None",
"lbl_0_59": "None",
"lbl_0_60": "None",
"lbl_0_61": "None",
"lbl_0_62": "None",
"lbl_0_63": "None",
"lbl_0_67": "None",
"lbl_0_68": "481161.23",
"lbl_0_69": "None",
"lbl_0_70": "None",
"lbl_0_71": "None",
"lbl_0_72": "749100.68",
"lbl_0_73": "418381-6",
"lbl_0_74": "None",
"lbl_0_77": "755042.64",
"lbl_0_78": "None",
"lbl_0_79": "560928.32",
"lbl_0_80": "493913.73",
"lbl_0_81": "None",
"lbl_0_82": "738597.72",
"lbl_0_83": "34990.46"
}
```
[base]: https://huggingface.co/naver-clova-ix/donut-base