hrishikeshpai30's picture
Update README.md
f63a2d6
|
raw
history blame
1.95 kB
metadata
tags:
  - automatic-speech-recognition
  - ahazeemi/librispeech10h
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: wavlm-libri-clean-100h-large
    results: []
datasets:
  - ahazeemi/librispeech10h
language:
  - en
pipeline_tag: automatic-speech-recognition

wavlm-libri-clean-100h-large

This model is a fine-tuned version of microsoft/wavlm-large on the AHAZEEMI/LIBRISPEECH10H - CLEAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0893
  • Wer: 0.0655

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Wer
0.0144 0.42 300 0.0947 0.0749
0.1408 0.84 600 0.1347 0.1363
0.0396 1.26 900 0.1090 0.0935
0.0353 1.68 1200 0.1032 0.0832
0.051 2.1 1500 0.0969 0.0774
0.0254 2.52 1800 0.0930 0.0715
0.0579 2.94 2100 0.0894 0.0660

Framework versions

  • Transformers 4.26.1
  • Pytorch 2.0.0+cpu
  • Datasets 2.9.0
  • Tokenizers 0.13.2