Update handler.py
Browse files- handler.py +22 -21
handler.py
CHANGED
@@ -4,38 +4,40 @@ import torch
|
|
4 |
import json
|
5 |
import os
|
6 |
|
7 |
-
# Set the
|
8 |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
|
9 |
|
10 |
class EndpointHandler:
|
11 |
def __init__(self, model_dir):
|
12 |
-
# Load the model with
|
13 |
self.model = Qwen2VLForConditionalGeneration.from_pretrained(
|
14 |
model_dir,
|
15 |
-
torch_dtype=torch.float16, #
|
16 |
-
device_map="auto", #
|
17 |
low_cpu_mem_usage=True # Minimize CPU memory usage
|
18 |
)
|
19 |
self.processor = AutoProcessor.from_pretrained(model_dir)
|
20 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
-
|
22 |
self.model.eval()
|
23 |
|
24 |
-
# Enable gradient checkpointing for
|
25 |
self.model.gradient_checkpointing_enable()
|
26 |
|
27 |
def preprocess(self, request_data):
|
28 |
-
#
|
29 |
messages = request_data.get('messages')
|
30 |
if not messages:
|
31 |
raise ValueError("Messages are required")
|
32 |
-
|
33 |
-
# Process
|
34 |
image_inputs, video_inputs = process_vision_info(messages)
|
|
|
35 |
# Prepare text input for the chat model
|
36 |
text = self.processor.apply_chat_template(
|
37 |
messages, tokenize=False, add_generation_prompt=True
|
38 |
)
|
|
|
39 |
# Prepare inputs for the model (text + vision inputs)
|
40 |
inputs = self.processor(
|
41 |
text=[text],
|
@@ -45,30 +47,30 @@ class EndpointHandler:
|
|
45 |
return_tensors="pt",
|
46 |
)
|
47 |
|
48 |
-
return inputs.to(self.device)
|
49 |
|
50 |
def inference(self, inputs):
|
51 |
-
# Perform inference
|
52 |
with torch.no_grad():
|
53 |
generated_ids = self.model.generate(
|
54 |
**inputs,
|
55 |
-
max_new_tokens=64, # Reduce
|
56 |
-
num_beams=1, #
|
57 |
-
max_batch_size=1 # Keep batch size small to
|
58 |
)
|
59 |
|
60 |
-
# Trim
|
61 |
generated_ids_trimmed = [
|
62 |
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
63 |
]
|
64 |
|
65 |
-
# Clear CUDA cache after inference to
|
66 |
torch.cuda.empty_cache()
|
67 |
|
68 |
return generated_ids_trimmed
|
69 |
|
70 |
def postprocess(self, inference_output):
|
71 |
-
# Decode
|
72 |
output_text = self.processor.batch_decode(
|
73 |
inference_output, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
74 |
)
|
@@ -76,15 +78,14 @@ class EndpointHandler:
|
|
76 |
|
77 |
def __call__(self, request):
|
78 |
try:
|
79 |
-
# Parse
|
80 |
request_data = json.loads(request)
|
81 |
-
# Preprocess
|
82 |
inputs = self.preprocess(request_data)
|
83 |
# Perform inference
|
84 |
outputs = self.inference(inputs)
|
85 |
-
# Postprocess
|
86 |
result = self.postprocess(outputs)
|
87 |
return json.dumps({"result": result})
|
88 |
except Exception as e:
|
89 |
-
# Handle any errors during execution
|
90 |
return json.dumps({"error": str(e)})
|
|
|
4 |
import json
|
5 |
import os
|
6 |
|
7 |
+
# Set the environment variable to handle memory fragmentation
|
8 |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
|
9 |
|
10 |
class EndpointHandler:
|
11 |
def __init__(self, model_dir):
|
12 |
+
# Load the model with automatic device dispatching
|
13 |
self.model = Qwen2VLForConditionalGeneration.from_pretrained(
|
14 |
model_dir,
|
15 |
+
torch_dtype=torch.float16, # Use FP16 for memory efficiency
|
16 |
+
device_map="auto", # Auto device dispatch across available GPUs
|
17 |
low_cpu_mem_usage=True # Minimize CPU memory usage
|
18 |
)
|
19 |
self.processor = AutoProcessor.from_pretrained(model_dir)
|
20 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
+
# No need to move model to device manually; device_map handles it
|
22 |
self.model.eval()
|
23 |
|
24 |
+
# Enable gradient checkpointing for further memory optimization
|
25 |
self.model.gradient_checkpointing_enable()
|
26 |
|
27 |
def preprocess(self, request_data):
|
28 |
+
# Handle the request and extract vision data (images, videos)
|
29 |
messages = request_data.get('messages')
|
30 |
if not messages:
|
31 |
raise ValueError("Messages are required")
|
32 |
+
|
33 |
+
# Process vision input from the messages
|
34 |
image_inputs, video_inputs = process_vision_info(messages)
|
35 |
+
|
36 |
# Prepare text input for the chat model
|
37 |
text = self.processor.apply_chat_template(
|
38 |
messages, tokenize=False, add_generation_prompt=True
|
39 |
)
|
40 |
+
|
41 |
# Prepare inputs for the model (text + vision inputs)
|
42 |
inputs = self.processor(
|
43 |
text=[text],
|
|
|
47 |
return_tensors="pt",
|
48 |
)
|
49 |
|
50 |
+
return inputs.to(self.device)
|
51 |
|
52 |
def inference(self, inputs):
|
53 |
+
# Perform inference using memory-efficient settings
|
54 |
with torch.no_grad():
|
55 |
generated_ids = self.model.generate(
|
56 |
**inputs,
|
57 |
+
max_new_tokens=64, # Reduce max tokens for memory optimization
|
58 |
+
num_beams=1, # Reduce beam size to save memory
|
59 |
+
max_batch_size=1 # Keep batch size small to minimize memory usage
|
60 |
)
|
61 |
|
62 |
+
# Trim the output by removing input tokens from the generated output
|
63 |
generated_ids_trimmed = [
|
64 |
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
65 |
]
|
66 |
|
67 |
+
# Clear CUDA memory cache after inference to free up memory
|
68 |
torch.cuda.empty_cache()
|
69 |
|
70 |
return generated_ids_trimmed
|
71 |
|
72 |
def postprocess(self, inference_output):
|
73 |
+
# Decode the model's output into human-readable text
|
74 |
output_text = self.processor.batch_decode(
|
75 |
inference_output, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
76 |
)
|
|
|
78 |
|
79 |
def __call__(self, request):
|
80 |
try:
|
81 |
+
# Parse the JSON request
|
82 |
request_data = json.loads(request)
|
83 |
+
# Preprocess the input data
|
84 |
inputs = self.preprocess(request_data)
|
85 |
# Perform inference
|
86 |
outputs = self.inference(inputs)
|
87 |
+
# Postprocess the output and return the result
|
88 |
result = self.postprocess(outputs)
|
89 |
return json.dumps({"result": result})
|
90 |
except Exception as e:
|
|
|
91 |
return json.dumps({"error": str(e)})
|