vqvae / attention.py
frankleeeee's picture
updated license
387aa7a
raw
history blame contribute delete
No virus
23.3 kB
"""
MIT License
Copyright (c) 2021 Wilson Yan
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
This file is copied from https://github.com/wilson1yan/VideoGPT/blob/master/videogpt/attention.py
We adapted it to Hugging Face AutoModel for easier model loading.
"""
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.checkpoint import checkpoint
from ._utils import shift_dim, view_range, tensor_slice
class AttentionStack(nn.Module):
def __init__(
self, shape, embd_dim, n_head, n_layer, dropout,
attn_type, attn_dropout, class_cond_dim, frame_cond_shape,
):
super().__init__()
self.shape = shape
self.embd_dim = embd_dim
self.use_frame_cond = frame_cond_shape is not None
self.right_shift = RightShift(embd_dim)
self.pos_embd = AddBroadcastPosEmbed(
shape=shape, embd_dim=embd_dim
)
self.attn_nets = nn.ModuleList(
[
AttentionBlock(
shape=shape,
embd_dim=embd_dim,
n_head=n_head,
n_layer=n_layer,
dropout=dropout,
attn_type=attn_type,
attn_dropout=attn_dropout,
class_cond_dim=class_cond_dim,
frame_cond_shape=frame_cond_shape
)
for i in range(n_layer)
]
)
def forward(self, x, cond, decode_step, decode_idx):
"""
Args
------
x: (b, d1, d2, ..., dn, embd_dim)
cond: a dictionary of conditioning tensors
(below is used only when sampling for fast decoding)
decode: the enumerated rasterscan order of the current idx being sampled
decode_step: a tuple representing the current idx being sampled
"""
x = self.right_shift(x, decode_step)
x = self.pos_embd(x, decode_step, decode_idx)
for net in self.attn_nets:
x = net(x, cond, decode_step, decode_idx)
return x
class AttentionBlock(nn.Module):
def __init__(self, shape, embd_dim, n_head, n_layer, dropout,
attn_type, attn_dropout, class_cond_dim, frame_cond_shape):
super().__init__()
self.use_frame_cond = frame_cond_shape is not None
self.pre_attn_norm = LayerNorm(embd_dim, class_cond_dim)
self.post_attn_dp = nn.Dropout(dropout)
self.attn = MultiHeadAttention(shape, embd_dim, embd_dim, n_head,
n_layer, causal=True, attn_type=attn_type,
attn_kwargs=dict(attn_dropout=attn_dropout))
if frame_cond_shape is not None:
enc_len = np.prod(frame_cond_shape[:-1])
self.pre_enc_norm = LayerNorm(embd_dim, class_cond_dim)
self.post_enc_dp = nn.Dropout(dropout)
self.enc_attn = MultiHeadAttention(shape, embd_dim, frame_cond_shape[-1],
n_head, n_layer, attn_type='full',
attn_kwargs=dict(attn_dropout=0.), causal=False)
self.pre_fc_norm = LayerNorm(embd_dim, class_cond_dim)
self.post_fc_dp = nn.Dropout(dropout)
self.fc_block = nn.Sequential(
nn.Linear(in_features=embd_dim, out_features=embd_dim * 4),
GeLU2(),
nn.Linear(in_features=embd_dim * 4, out_features=embd_dim),
)
def forward(self, x, cond, decode_step, decode_idx):
h = self.pre_attn_norm(x, cond)
if self.training:
h = checkpoint(self.attn, h, h, h, decode_step, decode_idx)
else:
h = self.attn(h, h, h, decode_step, decode_idx)
h = self.post_attn_dp(h)
x = x + h
if self.use_frame_cond:
h = self.pre_enc_norm(x, cond)
if self.training:
h = checkpoint(self.enc_attn, h, cond['frame_cond'], cond['frame_cond'],
decode_step, decode_idx)
else:
h = self.enc_attn(h, cond['frame_cond'], cond['frame_cond'],
decode_step, decode_idx)
h = self.post_enc_dp(h)
x = x + h
h = self.pre_fc_norm(x, cond)
if self.training:
h = checkpoint(self.fc_block, h)
else:
h = self.fc_block(h)
h = self.post_fc_dp(h)
x = x + h
return x
class MultiHeadAttention(nn.Module):
def __init__(self, shape, dim_q, dim_kv, n_head, n_layer,
causal, attn_type, attn_kwargs):
super().__init__()
self.causal = causal
self.shape = shape
self.d_k = dim_q // n_head
self.d_v = dim_kv // n_head
self.n_head = n_head
self.w_qs = nn.Linear(dim_q, n_head * self.d_k, bias=False) # q
self.w_qs.weight.data.normal_(std=1.0 / np.sqrt(dim_q))
self.w_ks = nn.Linear(dim_kv, n_head * self.d_k, bias=False) # k
self.w_ks.weight.data.normal_(std=1.0 / np.sqrt(dim_kv))
self.w_vs = nn.Linear(dim_kv, n_head * self.d_v, bias=False) # v
self.w_vs.weight.data.normal_(std=1.0 / np.sqrt(dim_kv))
self.fc = nn.Linear(n_head * self.d_v, dim_q, bias=True) # c
self.fc.weight.data.normal_(std=1.0 / np.sqrt(dim_q * n_layer))
if attn_type == 'full':
self.attn = FullAttention(shape, causal, **attn_kwargs)
elif attn_type == 'axial':
assert not causal, 'causal axial attention is not supported'
self.attn = AxialAttention(len(shape), **attn_kwargs)
elif attn_type == 'sparse':
self.attn = SparseAttention(shape, n_head, causal, **attn_kwargs)
self.cache = None
def forward(self, q, k, v, decode_step=None, decode_idx=None):
""" Compute multi-head attention
Args
q, k, v: a [b, d1, ..., dn, c] tensor or
a [b, 1, ..., 1, c] tensor if decode_step is not None
Returns
The output after performing attention
"""
# compute k, q, v
d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
q = view_range(self.w_qs(q), -1, None, (n_head, d_k))
k = view_range(self.w_ks(k), -1, None, (n_head, d_k))
v = view_range(self.w_vs(v), -1, None, (n_head, d_v))
# b x n_head x seq_len x d
# (b, *d_shape, n_head, d) -> (b, n_head, *d_shape, d)
q = shift_dim(q, -2, 1)
k = shift_dim(k, -2, 1)
v = shift_dim(v, -2, 1)
# fast decoding
if decode_step is not None:
if decode_step == 0:
if self.causal:
k_shape = (q.shape[0], n_head, *self.shape, self.d_k)
v_shape = (q.shape[0], n_head, *self.shape, self.d_v)
self.cache = dict(k=torch.zeros(k_shape, dtype=k.dtype, device=q.device),
v=torch.zeros(v_shape, dtype=v.dtype, device=q.device))
else:
# cache only once in the non-causal case
self.cache = dict(k=k.clone(), v=v.clone())
if self.causal:
idx = (slice(None, None), slice(None, None), *[slice(i, i+ 1) for i in decode_idx])
self.cache['k'][idx] = k
self.cache['v'][idx] = v
k, v = self.cache['k'], self.cache['v']
a = self.attn(q, k, v, decode_step, decode_idx)
# (b, *d_shape, n_head, d) -> (b, *d_shape, n_head * d)
a = shift_dim(a, 1, -2).flatten(start_dim=-2)
a = self.fc(a) # (b x seq_len x embd_dim)
return a
############## Attention #######################
class FullAttention(nn.Module):
def __init__(self, shape, causal, attn_dropout):
super().__init__()
self.causal = causal
self.attn_dropout = attn_dropout
seq_len = np.prod(shape)
if self.causal:
self.register_buffer('mask', torch.tril(torch.ones(seq_len, seq_len)))
def forward(self, q, k, v, decode_step, decode_idx):
mask = self.mask if self.causal else None
if decode_step is not None and mask is not None:
mask = mask[[decode_step]]
old_shape = q.shape[2:-1]
q = q.flatten(start_dim=2, end_dim=-2)
k = k.flatten(start_dim=2, end_dim=-2)
v = v.flatten(start_dim=2, end_dim=-2)
out = scaled_dot_product_attention(q, k, v, mask=mask,
attn_dropout=self.attn_dropout,
training=self.training)
return view_range(out, 2, 3, old_shape)
class AxialAttention(nn.Module):
def __init__(self, n_dim, axial_dim):
super().__init__()
if axial_dim < 0:
axial_dim = 2 + n_dim + 1 + axial_dim
else:
axial_dim += 2 # account for batch, head, dim
self.axial_dim = axial_dim
def forward(self, q, k, v, decode_step, decode_idx):
q = shift_dim(q, self.axial_dim, -2).flatten(end_dim=-3)
k = shift_dim(k, self.axial_dim, -2).flatten(end_dim=-3)
v = shift_dim(v, self.axial_dim, -2)
old_shape = list(v.shape)
v = v.flatten(end_dim=-3)
out = scaled_dot_product_attention(q, k, v, training=self.training)
out = out.view(*old_shape)
out = shift_dim(out, -2, self.axial_dim)
return out
class SparseAttention(nn.Module):
ops = dict()
attn_mask = dict()
block_layout = dict()
def __init__(self, shape, n_head, causal, num_local_blocks=4, block=32,
attn_dropout=0.): # does not use attn_dropout
super().__init__()
self.causal = causal
self.shape = shape
self.sparsity_config = StridedSparsityConfig(shape=shape, n_head=n_head,
causal=causal, block=block,
num_local_blocks=num_local_blocks)
if self.shape not in SparseAttention.block_layout:
SparseAttention.block_layout[self.shape] = self.sparsity_config.make_layout()
if causal and self.shape not in SparseAttention.attn_mask:
SparseAttention.attn_mask[self.shape] = self.sparsity_config.make_sparse_attn_mask()
def get_ops(self):
try:
from deepspeed.ops.sparse_attention import MatMul, Softmax
except:
raise Exception('Error importing deepspeed. Please install using `DS_BUILD_SPARSE_ATTN=1 pip install deepspeed`')
if self.shape not in SparseAttention.ops:
sparsity_layout = self.sparsity_config.make_layout()
sparse_dot_sdd_nt = MatMul(sparsity_layout,
self.sparsity_config.block,
'sdd',
trans_a=False,
trans_b=True)
sparse_dot_dsd_nn = MatMul(sparsity_layout,
self.sparsity_config.block,
'dsd',
trans_a=False,
trans_b=False)
sparse_softmax = Softmax(sparsity_layout, self.sparsity_config.block)
SparseAttention.ops[self.shape] = (sparse_dot_sdd_nt,
sparse_dot_dsd_nn,
sparse_softmax)
return SparseAttention.ops[self.shape]
def forward(self, q, k, v, decode_step, decode_idx):
if self.training and self.shape not in SparseAttention.ops:
self.get_ops()
SparseAttention.block_layout[self.shape] = SparseAttention.block_layout[self.shape].to(q)
if self.causal:
SparseAttention.attn_mask[self.shape] = SparseAttention.attn_mask[self.shape].to(q).type_as(q)
attn_mask = SparseAttention.attn_mask[self.shape] if self.causal else None
old_shape = q.shape[2:-1]
q = q.flatten(start_dim=2, end_dim=-2)
k = k.flatten(start_dim=2, end_dim=-2)
v = v.flatten(start_dim=2, end_dim=-2)
if decode_step is not None:
mask = self.sparsity_config.get_non_block_layout_row(SparseAttention.block_layout[self.shape], decode_step)
out = scaled_dot_product_attention(q, k, v, mask=mask, training=self.training)
else:
if q.shape != k.shape or k.shape != v.shape:
raise Exception('SparseAttention only support self-attention')
sparse_dot_sdd_nt, sparse_dot_dsd_nn, sparse_softmax = self.get_ops()
scaling = float(q.shape[-1]) ** -0.5
attn_output_weights = sparse_dot_sdd_nt(q, k)
if attn_mask is not None:
attn_output_weights = attn_output_weights.masked_fill(attn_mask == 0,
float('-inf'))
attn_output_weights = sparse_softmax(
attn_output_weights,
scale=scaling
)
out = sparse_dot_dsd_nn(attn_output_weights, v)
return view_range(out, 2, 3, old_shape)
class StridedSparsityConfig(object):
"""
Strided Sparse configuration specified in https://arxiv.org/abs/1904.10509 that
generalizes to arbitrary dimensions
"""
def __init__(self, shape, n_head, causal, block, num_local_blocks):
self.n_head = n_head
self.shape = shape
self.causal = causal
self.block = block
self.num_local_blocks = num_local_blocks
assert self.num_local_blocks >= 1, 'Must have at least 1 local block'
assert self.seq_len % self.block == 0, 'seq len must be divisible by block size'
self._block_shape = self._compute_block_shape()
self._block_shape_cum = self._block_shape_cum_sizes()
@property
def seq_len(self):
return np.prod(self.shape)
@property
def num_blocks(self):
return self.seq_len // self.block
def set_local_layout(self, layout):
num_blocks = self.num_blocks
for row in range(0, num_blocks):
end = min(row + self.num_local_blocks, num_blocks)
for col in range(
max(0, row - self.num_local_blocks),
(row + 1 if self.causal else end)):
layout[:, row, col] = 1
return layout
def set_global_layout(self, layout):
num_blocks = self.num_blocks
n_dim = len(self._block_shape)
for row in range(num_blocks):
assert self._to_flattened_idx(self._to_unflattened_idx(row)) == row
cur_idx = self._to_unflattened_idx(row)
# no strided attention over last dim
for d in range(n_dim - 1):
end = self._block_shape[d]
for i in range(0, (cur_idx[d] + 1 if self.causal else end)):
new_idx = list(cur_idx)
new_idx[d] = i
new_idx = tuple(new_idx)
col = self._to_flattened_idx(new_idx)
layout[:, row, col] = 1
return layout
def make_layout(self):
layout = torch.zeros((self.n_head, self.num_blocks, self.num_blocks), dtype=torch.int64)
layout = self.set_local_layout(layout)
layout = self.set_global_layout(layout)
return layout
def make_sparse_attn_mask(self):
block_layout = self.make_layout()
assert block_layout.shape[1] == block_layout.shape[2] == self.num_blocks
num_dense_blocks = block_layout.sum().item()
attn_mask = torch.ones(num_dense_blocks, self.block, self.block)
counter = 0
for h in range(self.n_head):
for i in range(self.num_blocks):
for j in range(self.num_blocks):
elem = block_layout[h, i, j].item()
if elem == 1:
assert i >= j
if i == j: # need to mask within block on diagonals
attn_mask[counter] = torch.tril(attn_mask[counter])
counter += 1
assert counter == num_dense_blocks
return attn_mask.unsqueeze(0)
def get_non_block_layout_row(self, block_layout, row):
block_row = row // self.block
block_row = block_layout[:, [block_row]] # n_head x 1 x n_blocks
block_row = block_row.repeat_interleave(self.block, dim=-1)
block_row[:, :, row + 1:] = 0.
return block_row
############# Helper functions ##########################
def _compute_block_shape(self):
n_dim = len(self.shape)
cum_prod = 1
for i in range(n_dim - 1, -1, -1):
cum_prod *= self.shape[i]
if cum_prod > self.block:
break
assert cum_prod % self.block == 0
new_shape = (*self.shape[:i], cum_prod // self.block)
assert np.prod(new_shape) == np.prod(self.shape) // self.block
return new_shape
def _block_shape_cum_sizes(self):
bs = np.flip(np.array(self._block_shape))
return tuple(np.flip(np.cumprod(bs)[:-1])) + (1,)
def _to_flattened_idx(self, idx):
assert len(idx) == len(self._block_shape), f"{len(idx)} != {len(self._block_shape)}"
flat_idx = 0
for i in range(len(self._block_shape)):
flat_idx += idx[i] * self._block_shape_cum[i]
return flat_idx
def _to_unflattened_idx(self, flat_idx):
assert flat_idx < np.prod(self._block_shape)
idx = []
for i in range(len(self._block_shape)):
idx.append(flat_idx // self._block_shape_cum[i])
flat_idx %= self._block_shape_cum[i]
return tuple(idx)
################ Spatiotemporal broadcasted positional embeddings ###############
class AddBroadcastPosEmbed(nn.Module):
def __init__(self, shape, embd_dim, dim=-1):
super().__init__()
assert dim in [-1, 1] # only first or last dim supported
self.shape = shape
self.n_dim = n_dim = len(shape)
self.embd_dim = embd_dim
self.dim = dim
assert embd_dim % n_dim == 0, f"{embd_dim} % {n_dim} != 0"
self.emb = nn.ParameterDict({
f'd_{i}': nn.Parameter(torch.randn(shape[i], embd_dim // n_dim) * 0.01
if dim == -1 else
torch.randn(embd_dim // n_dim, shape[i]) * 0.01)
for i in range(n_dim)
})
def forward(self, x, decode_step=None, decode_idx=None):
embs = []
for i in range(self.n_dim):
e = self.emb[f'd_{i}']
if self.dim == -1:
# (1, 1, ..., 1, self.shape[i], 1, ..., -1)
e = e.view(1, *((1,) * i), self.shape[i], *((1,) * (self.n_dim - i - 1)), -1)
e = e.expand(1, *self.shape, -1)
else:
e = e.view(1, -1, *((1,) * i), self.shape[i], *((1,) * (self.n_dim - i - 1)))
e = e.expand(1, -1, *self.shape)
embs.append(e)
embs = torch.cat(embs, dim=self.dim)
if decode_step is not None:
embs = tensor_slice(embs, [0, *decode_idx, 0],
[x.shape[0], *(1,) * self.n_dim, x.shape[-1]])
return x + embs
################# Helper Functions ###################################
def scaled_dot_product_attention(q, k, v, mask=None, attn_dropout=0., training=True):
# Performs scaled dot-product attention over the second to last dimension dn
# (b, n_head, d1, ..., dn, d)
attn = torch.matmul(q, k.transpose(-1, -2))
attn = attn / np.sqrt(q.shape[-1])
if mask is not None:
attn = attn.masked_fill(mask == 0, float('-inf'))
attn_float = F.softmax(attn, dim=-1)
attn = attn_float.type_as(attn) # b x n_head x d1 x ... x dn x d
attn = F.dropout(attn, p=attn_dropout, training=training)
a = torch.matmul(attn, v) # b x n_head x d1 x ... x dn x d
return a
class RightShift(nn.Module):
def __init__(self, embd_dim):
super().__init__()
self.embd_dim = embd_dim
self.sos = nn.Parameter(torch.FloatTensor(embd_dim).normal_(std=0.02), requires_grad=True)
def forward(self, x, decode_step):
if decode_step is not None and decode_step > 0:
return x
x_shape = list(x.shape)
x = x.flatten(start_dim=1, end_dim=-2) # (b, seq_len, embd_dim)
sos = torch.ones(x_shape[0], 1, self.embd_dim, dtype=torch.float32).to(self.sos) * self.sos
sos = sos.type_as(x)
x = torch.cat([sos, x[:, :-1, :]], axis=1)
x = x.view(*x_shape)
return x
class GeLU2(nn.Module):
def forward(self, x):
return (1.702 * x).sigmoid() * x
class LayerNorm(nn.Module):
def __init__(self, embd_dim, class_cond_dim):
super().__init__()
self.conditional = class_cond_dim is not None
if self.conditional:
self.w = nn.Linear(class_cond_dim, embd_dim, bias=False)
nn.init.constant_(self.w.weight.data, 1. / np.sqrt(class_cond_dim))
self.wb = nn.Linear(class_cond_dim, embd_dim, bias=False)
else:
self.g = nn.Parameter(torch.ones(embd_dim, dtype=torch.float32), requires_grad=True)
self.b = nn.Parameter(torch.zeros(embd_dim, dtype=torch.float32), requires_grad=True)
def forward(self, x, cond):
if self.conditional: # (b, cond_dim)
g = 1 + self.w(cond['class_cond']).view(x.shape[0], *(1,)*(len(x.shape)-2), x.shape[-1]) # (b, ..., embd_dim)
b = self.wb(cond['class_cond']).view(x.shape[0], *(1,)*(len(x.shape)-2), x.shape[-1])
else:
g = self.g # (embd_dim,)
b = self.b
x_float = x.float()
mu = x_float.mean(dim=-1, keepdims=True)
s = (x_float - mu).square().mean(dim=-1, keepdims=True)
x_float = (x_float - mu) * (1e-5 + s.rsqrt()) # (b, ..., embd_dim)
x_float = x_float * g + b
x = x_float.type_as(x)
return x