|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import logging |
|
|
|
try: |
|
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask |
|
|
|
HAS_MASK_UTILS = True |
|
except ImportError: |
|
HAS_MASK_UTILS = False |
|
|
|
from .configuration_grok1 import Grok1Config |
|
from .modeling_grok1_outputs import MoeCausalLMOutputWithPast, MoeModelOutputWithPast |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
def load_balancing_loss_func( |
|
gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2 |
|
) -> float: |
|
r""" |
|
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. |
|
|
|
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss |
|
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between |
|
experts is too unbalanced. |
|
|
|
Args: |
|
gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]): |
|
Logits from the `gate`, should be a tuple of tensors. Shape: [batch_size, seqeunce_length, num_experts]. |
|
num_experts (`int`, *optional*): |
|
Number of experts |
|
|
|
Returns: |
|
The auxiliary loss. |
|
""" |
|
if gate_logits is None: |
|
return 0 |
|
|
|
if isinstance(gate_logits, tuple): |
|
|
|
compute_device = gate_logits[0].device |
|
gate_logits = torch.cat( |
|
[gate.to(compute_device) for gate in gate_logits], dim=0 |
|
) |
|
|
|
routing_weights, selected_experts = torch.topk(gate_logits, top_k, dim=-1) |
|
routing_weights = routing_weights.softmax(dim=-1) |
|
|
|
|
|
if selected_experts.dtype != torch.int64: |
|
selected_experts = selected_experts.to(torch.int64) |
|
|
|
if len(selected_experts.shape) == 2: |
|
selected_experts = selected_experts.unsqueeze(2) |
|
|
|
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts) |
|
|
|
|
|
expert_mask = torch.max(expert_mask, axis=-2).values |
|
|
|
|
|
expert_mask = expert_mask.to(torch.float32) |
|
tokens_per_group_and_expert = torch.mean(expert_mask, axis=-2) |
|
|
|
router_prob_per_group_and_expert = torch.mean(routing_weights, axis=-1) |
|
return torch.mean( |
|
tokens_per_group_and_expert * router_prob_per_group_and_expert.unsqueeze(-1) |
|
) * (num_experts**2) |
|
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
""" |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand( |
|
batch, num_key_value_heads, n_rep, slen, head_dim |
|
) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
class RMSNorm(nn.Module): |
|
def __init__( |
|
self, |
|
hidden_size: int, |
|
eps: float = 1e-5, |
|
create_scale: bool = True, |
|
) -> None: |
|
super().__init__() |
|
self.variance_epsilon = eps |
|
if create_scale: |
|
self.scale = nn.Parameter(torch.zeros(hidden_size)) |
|
else: |
|
self.scale = 1.0 |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
hidden_states = self.scale * hidden_states |
|
return hidden_states.to(input_dtype) |
|
|
|
|
|
class RotaryEmbedding(nn.Module): |
|
def __init__( |
|
self, dim: int, max_position_embeddings: int = 2048, base: int = 10000 |
|
) -> None: |
|
super().__init__() |
|
assert dim % 2 == 0 |
|
self.dim = dim |
|
self.max_position_embeddings = max_position_embeddings |
|
self.base = base |
|
inv_freq = 1.0 / ( |
|
self.base ** (torch.arange(0, self.dim, 2).float() / self.dim) |
|
) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
self._set_cos_sin_cache( |
|
seq_len=max_position_embeddings, |
|
device=self.inv_freq.device, |
|
dtype=torch.get_default_dtype(), |
|
) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange( |
|
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype |
|
) |
|
|
|
freqs = torch.outer(t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) |
|
|
|
def forward(self, x, seq_len=None): |
|
|
|
if seq_len > self.max_seq_len_cached: |
|
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) |
|
|
|
return ( |
|
self.cos_cached[:seq_len].to(dtype=x.dtype), |
|
self.sin_cached[:seq_len].to(dtype=x.dtype), |
|
) |
|
|
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): |
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
Args: |
|
q (`torch.Tensor`): The query tensor. |
|
k (`torch.Tensor`): The key tensor. |
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
position_ids (`torch.Tensor`): |
|
The position indices of the tokens corresponding to the query and key tensors. For example, this can be |
|
used to pass offsetted position ids when working with a KV-cache. |
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
Returns: |
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
""" |
|
cos = cos[position_ids].unsqueeze(unsqueeze_dim) |
|
sin = sin[position_ids].unsqueeze(unsqueeze_dim) |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
return q_embed, k_embed |
|
|
|
|
|
class MultiHeadAttention(nn.Module): |
|
def __init__( |
|
self, |
|
hidden_size: int, |
|
num_heads: int, |
|
num_key_value_heads: Optional[int] = None, |
|
max_position_embeddings: int = 2048, |
|
attn_output_multiplier: float = 1.0, |
|
max_attn_val: float = 30.0, |
|
): |
|
super().__init__() |
|
self.hidden_size = hidden_size |
|
self.num_heads = num_heads |
|
self.head_dim = hidden_size // num_heads |
|
if num_key_value_heads is None: |
|
num_key_value_heads = num_heads |
|
self.num_key_value_heads = num_key_value_heads |
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
self.attn_output_multiplier = attn_output_multiplier |
|
self.max_attn_val = max_attn_val |
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size: |
|
raise ValueError( |
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" |
|
f" and `num_heads`: {self.num_heads})." |
|
) |
|
|
|
self.q_proj = nn.Linear(hidden_size, self.num_heads * self.head_dim, bias=False) |
|
self.k_proj = nn.Linear( |
|
hidden_size, self.num_key_value_heads * self.head_dim, bias=False |
|
) |
|
self.v_proj = nn.Linear( |
|
hidden_size, self.num_key_value_heads * self.head_dim, bias=False |
|
) |
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, hidden_size, bias=False) |
|
|
|
self.rotary_emb = RotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=max_position_embeddings, |
|
) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
query_states = query_states.view( |
|
bsz, q_len, self.num_heads, self.head_dim |
|
).transpose(1, 2) |
|
key_states = key_states.view( |
|
bsz, q_len, self.num_key_value_heads, self.head_dim |
|
).transpose(1, 2) |
|
value_states = value_states.view( |
|
bsz, q_len, self.num_key_value_heads, self.head_dim |
|
).transpose(1, 2) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
kv_seq_len += past_key_value[0].shape[-2] |
|
|
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) |
|
query_states, key_states = apply_rotary_pos_emb( |
|
query_states, key_states, cos, sin, position_ids |
|
) |
|
|
|
if past_key_value is not None: |
|
|
|
key_states = torch.cat([past_key_value[0], key_states], dim=2) |
|
value_states = torch.cat([past_key_value[1], value_states], dim=2) |
|
|
|
past_key_value = (key_states, value_states) if use_cache else None |
|
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)).to( |
|
torch.float |
|
) |
|
attn_weights = attn_weights * self.attn_output_multiplier |
|
attn_weights = self.max_attn_val * F.tanh(attn_weights / self.max_attn_val) |
|
|
|
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" |
|
f" {attn_weights.size()}" |
|
) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" |
|
) |
|
|
|
attn_weights = attn_weights + attention_mask |
|
|
|
attn_weights = F.softmax(attn_weights, dim=-1).to(query_states.dtype) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" |
|
f" {attn_output.size()}" |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) |
|
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
class MoeMLP(nn.Module): |
|
def __init__( |
|
self, |
|
hidden_dim: int, |
|
ffn_dim: int, |
|
) -> None: |
|
super().__init__() |
|
self.linear_v = nn.Linear(hidden_dim, ffn_dim, bias=False) |
|
self.linear_1 = nn.Linear(ffn_dim, hidden_dim, bias=False) |
|
self.linear = nn.Linear(hidden_dim, ffn_dim, bias=False) |
|
self.act_fn = nn.GELU() |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
current_hidden_states = self.act_fn(self.linear(hidden_states)) * self.linear_v( |
|
hidden_states |
|
) |
|
current_hidden_states = self.linear_1(current_hidden_states) |
|
return current_hidden_states |
|
|
|
|
|
class MoeBlock(nn.Module): |
|
def __init__( |
|
self, |
|
hidden_dim: int, |
|
ffn_dim: int, |
|
num_experts: int, |
|
top_k: int, |
|
) -> None: |
|
super().__init__() |
|
self.num_experts = num_experts |
|
self.top_k = top_k |
|
self.gate = nn.Linear(hidden_dim, num_experts, bias=False) |
|
self.experts = nn.ModuleList( |
|
[MoeMLP(hidden_dim, ffn_dim) for _ in range(num_experts)] |
|
) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor]: |
|
batch_size, sequence_length, hidden_dim = hidden_states.shape |
|
hidden_states = hidden_states.view(-1, hidden_dim) |
|
|
|
router_logits = self.gate(hidden_states) |
|
|
|
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) |
|
routing_weights, selected_experts = torch.topk( |
|
routing_weights, self.top_k, dim=-1 |
|
) |
|
|
|
routing_weights = routing_weights.to(hidden_states.dtype) |
|
|
|
final_hidden_states = torch.zeros( |
|
(batch_size * sequence_length, hidden_dim), |
|
dtype=hidden_states.dtype, |
|
device=hidden_states.device, |
|
) |
|
|
|
|
|
expert_mask = torch.nn.functional.one_hot( |
|
selected_experts, num_classes=self.num_experts |
|
).permute(2, 1, 0) |
|
|
|
|
|
for expert_idx in range(self.num_experts): |
|
expert_layer = self.experts[expert_idx] |
|
idx, top_x = torch.where(expert_mask[expert_idx]) |
|
|
|
if top_x.shape[0] == 0: |
|
continue |
|
|
|
|
|
top_x_list = top_x.tolist() |
|
idx_list = idx.tolist() |
|
|
|
|
|
|
|
|
|
current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim) |
|
current_hidden_states = ( |
|
expert_layer(current_state) |
|
* routing_weights[top_x_list, idx_list, None] |
|
) |
|
|
|
|
|
|
|
final_hidden_states.index_add_( |
|
0, top_x, current_hidden_states.to(hidden_states.dtype) |
|
) |
|
final_hidden_states = final_hidden_states.reshape( |
|
batch_size, sequence_length, hidden_dim |
|
) |
|
return final_hidden_states, router_logits |
|
|
|
|
|
class DecoderLayer(nn.Module): |
|
def __init__( |
|
self, |
|
hidden_size: int, |
|
intermediate_size: int, |
|
num_heads: int, |
|
num_key_value_heads: int, |
|
num_experts: int, |
|
top_k: int, |
|
max_position_embeddings: int = 2048, |
|
attn_output_multiplier: float = 1.0, |
|
max_attn_val: float = 30.0, |
|
rms_norm_eps: float = 1e-5, |
|
) -> None: |
|
super().__init__() |
|
self.attn = MultiHeadAttention( |
|
hidden_size, |
|
num_heads, |
|
num_key_value_heads, |
|
max_position_embeddings=max_position_embeddings, |
|
attn_output_multiplier=attn_output_multiplier, |
|
max_attn_val=max_attn_val, |
|
) |
|
self.moe_block = MoeBlock(hidden_size, intermediate_size, num_experts, top_k) |
|
self.pre_attn_norm = RMSNorm(hidden_size, eps=rms_norm_eps) |
|
self.post_attn_norm = RMSNorm(hidden_size, eps=rms_norm_eps) |
|
self.pre_moe_norm = RMSNorm(hidden_size, eps=rms_norm_eps) |
|
self.post_moe_norm = RMSNorm(hidden_size, eps=rms_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
output_router_logits: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
**kwargs, |
|
) -> Tuple[ |
|
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] |
|
]: |
|
residual = hidden_states |
|
hidden_states = self.pre_attn_norm(hidden_states) |
|
hidden_states, attention_weights, present_key_value = self.attn( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
hidden_states = self.post_attn_norm(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
residual = hidden_states |
|
hidden_states = self.pre_moe_norm(hidden_states) |
|
hidden_states, router_logits = self.moe_block(hidden_states) |
|
hidden_states = self.post_moe_norm(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
if output_attentions: |
|
outputs += (attention_weights,) |
|
if use_cache: |
|
outputs += (present_key_value,) |
|
if output_router_logits: |
|
outputs += (router_logits,) |
|
return outputs |
|
|
|
|
|
class Grok1PretrainedModel(PreTrainedModel): |
|
config_class = Grok1Config |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["DecoderLayer"] |
|
_skip_keys_device_placement = "past_key_values" |
|
_supports_flash_attn_2 = False |
|
_supports_cache_class = False |
|
|
|
def _init_weights(self, module) -> None: |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.zero_() |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.zero_() |
|
|
|
|
|
|
|
def _make_causal_mask( |
|
input_ids_shape: torch.Size, |
|
dtype: torch.dtype, |
|
device: torch.device, |
|
past_key_values_length: int = 0, |
|
): |
|
""" |
|
Make causal mask used for bi-directional self-attention. |
|
""" |
|
bsz, tgt_len = input_ids_shape |
|
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device) |
|
mask_cond = torch.arange(mask.size(-1), device=device) |
|
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) |
|
mask = mask.to(dtype) |
|
|
|
if past_key_values_length > 0: |
|
mask = torch.cat( |
|
[ |
|
torch.zeros( |
|
tgt_len, past_key_values_length, dtype=dtype, device=device |
|
), |
|
mask, |
|
], |
|
dim=-1, |
|
) |
|
return mask[None, None, :, :].expand( |
|
bsz, 1, tgt_len, tgt_len + past_key_values_length |
|
) |
|
|
|
|
|
|
|
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): |
|
""" |
|
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. |
|
""" |
|
bsz, src_len = mask.size() |
|
tgt_len = tgt_len if tgt_len is not None else src_len |
|
|
|
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) |
|
|
|
inverted_mask = 1.0 - expanded_mask |
|
|
|
return inverted_mask.masked_fill( |
|
inverted_mask.to(torch.bool), torch.finfo(dtype).min |
|
) |
|
|
|
|
|
class Grok1Model(Grok1PretrainedModel): |
|
def __init__(self, config: Grok1Config) -> None: |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
self.embedding_multiplier_scale = config.embedding_multiplier_scale |
|
|
|
self.embed_tokens = nn.Embedding( |
|
config.vocab_size, config.hidden_size, self.padding_idx |
|
) |
|
self.layers = nn.ModuleList( |
|
[ |
|
DecoderLayer( |
|
hidden_size=config.hidden_size, |
|
intermediate_size=config.intermediate_size, |
|
num_heads=config.num_attention_heads, |
|
num_key_value_heads=config.num_key_value_heads, |
|
num_experts=config.num_experts, |
|
top_k=config.num_experts_per_tok, |
|
max_position_embeddings=config.max_position_embeddings, |
|
attn_output_multiplier=config.attn_output_multiplier, |
|
max_attn_val=config.max_attn_value, |
|
rms_norm_eps=config.rms_norm_eps, |
|
) |
|
for layer_idx in range(config.num_hidden_layers) |
|
] |
|
) |
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.gradient_checkpointing = False |
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
|
|
def _prepare_decoder_attention_mask( |
|
self, attention_mask, input_shape, inputs_embeds, past_key_values_length |
|
): |
|
|
|
|
|
combined_attention_mask = None |
|
if input_shape[-1] > 1: |
|
combined_attention_mask = _make_causal_mask( |
|
input_shape, |
|
inputs_embeds.dtype, |
|
device=inputs_embeds.device, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
|
|
if attention_mask is not None: |
|
|
|
expanded_attn_mask = _expand_mask( |
|
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] |
|
).to(inputs_embeds.device) |
|
combined_attention_mask = ( |
|
expanded_attn_mask |
|
if combined_attention_mask is None |
|
else expanded_attn_mask + combined_attention_mask |
|
) |
|
|
|
return combined_attention_mask |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
output_router_logits: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, MoeModelOutputWithPast]: |
|
output_attentions = ( |
|
output_attentions |
|
if output_attentions is not None |
|
else self.config.output_attentions |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states |
|
if output_hidden_states is not None |
|
else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError( |
|
"You cannot specify both input_ids and inputs_embeds at the same time" |
|
) |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape[:2] |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length = inputs_embeds.shape[:2] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
seq_length_with_past = seq_length |
|
past_key_values_length = 0 |
|
if past_key_values is not None: |
|
past_key_values_length = past_key_values[0][0].shape[2] |
|
seq_length_with_past = seq_length_with_past + past_key_values_length |
|
|
|
if position_ids is None: |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
position_ids = torch.arange( |
|
past_key_values_length, |
|
seq_length + past_key_values_length, |
|
dtype=torch.long, |
|
device=device, |
|
) |
|
position_ids = position_ids.unsqueeze(0) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
inputs_embeds = inputs_embeds * self.embedding_multiplier_scale |
|
|
|
if HAS_MASK_UTILS: |
|
|
|
attention_mask = _prepare_4d_causal_attention_mask( |
|
attention_mask, |
|
(batch_size, seq_length), |
|
inputs_embeds, |
|
past_key_values_length, |
|
) |
|
else: |
|
if attention_mask is None: |
|
attention_mask = torch.ones( |
|
(batch_size, seq_length_with_past), |
|
dtype=torch.bool, |
|
device=inputs_embeds.device, |
|
) |
|
attention_mask = self._prepare_decoder_attention_mask( |
|
attention_mask, |
|
(batch_size, seq_length), |
|
inputs_embeds, |
|
past_key_values_length, |
|
) |
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
all_router_logits = () if output_router_logits else None |
|
next_decoder_cache = () if use_cache else None |
|
|
|
for idx, decoder_layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
past_key_value = ( |
|
past_key_values[idx] if past_key_values is not None else None |
|
) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
|
|
return module(*inputs, past_key_value, output_attentions) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(decoder_layer), |
|
hidden_states, |
|
attention_mask, |
|
position_ids, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
if output_router_logits: |
|
all_router_logits += (layer_outputs[-1],) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
next_cache = next_decoder_cache if use_cache else None |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
next_cache, |
|
all_hidden_states, |
|
all_self_attns, |
|
all_router_logits, |
|
] |
|
if v is not None |
|
) |
|
return MoeModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
router_logits=all_router_logits, |
|
) |
|
|
|
|
|
class Grok1ModelForCausalLM(Grok1PretrainedModel): |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
def __init__(self, config: Grok1Config): |
|
super().__init__(config) |
|
self.model = Grok1Model(config) |
|
self.vocab_size = config.vocab_size |
|
self.output_multiplier_scale = config.output_multiplier_scale |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
self.router_aux_loss_coef = config.router_aux_loss_coef |
|
self.num_experts = config.num_experts |
|
self.num_experts_per_tok = config.num_experts_per_tok |
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
output_router_logits: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, MoeCausalLMOutputWithPast]: |
|
output_attentions = ( |
|
output_attentions |
|
if output_attentions is not None |
|
else self.config.output_attentions |
|
) |
|
output_router_logits = ( |
|
output_router_logits |
|
if output_router_logits is not None |
|
else self.config.output_router_logits |
|
) |
|
|
|
output_hidden_states = ( |
|
output_hidden_states |
|
if output_hidden_states is not None |
|
else self.config.output_hidden_states |
|
) |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
output_router_logits=output_router_logits, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.lm_head(hidden_states) |
|
logits = logits * self.output_multiplier_scale |
|
logits = logits.float() |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = nn.CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
aux_loss = None |
|
if output_router_logits: |
|
aux_loss = load_balancing_loss_func( |
|
outputs.router_logits if return_dict else outputs[-1], |
|
self.num_experts, |
|
self.num_experts_per_tok, |
|
) |
|
if labels is not None: |
|
loss += self.router_aux_loss_coef * aux_loss |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
if output_router_logits: |
|
output = (aux_loss,) + output |
|
return (loss,) + output if loss is not None else output |
|
|
|
return MoeCausalLMOutputWithPast( |
|
loss=loss, |
|
aux_loss=aux_loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
router_logits=outputs.router_logits, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
past_key_values=None, |
|
attention_mask=None, |
|
inputs_embeds=None, |
|
**kwargs, |
|
): |
|
if past_key_values: |
|
input_ids = input_ids[:, -1:] |
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -1].unsqueeze(-1) |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"position_ids": position_ids, |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
} |
|
) |
|
return model_inputs |
|
|