IACC-compressor-small / modeling_rankingprompter.py
howard-hou's picture
Upload RankingPrompter
0b9ef29 verified
raw
history blame contribute delete
No virus
79.1 kB
""" modified PyTorch UMT5 model. add save attention weights function so that we can compute grad-cam."""
import copy
import math
from typing import List, Optional, Tuple, Union
import torch
from torch import nn
from torch.utils.checkpoint import checkpoint
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
Seq2SeqModelOutput,
)
from transformers import PreTrainedModel, UMT5Config
from transformers.utils import (
DUMMY_INPUTS,
DUMMY_MASK,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_torch_fx_proxy,
logging,
replace_return_docstrings,
)
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "UMT5Config"
_CHECKPOINT_FOR_DOC = "google/umt5-small"
# Copied from transformers.models.t5.modeling_t5.T5LayerNorm with T5->UMT5
class UMT5LayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
Construct a layernorm module in the UMT5 style. No bias and no subtraction of mean.
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
# UMT5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
# half-precision inputs is done in fp32
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
# convert into half-precision if necessary
if self.weight.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.to(self.weight.dtype)
return self.weight * hidden_states
# Copied from transformers.models.t5.modeling_t5.T5DenseActDense with T5->UMT5
class UMT5DenseActDense(nn.Module):
def __init__(self, config: UMT5Config):
super().__init__()
self.wi = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
self.act = ACT2FN[config.dense_act_fn]
def forward(self, hidden_states):
hidden_states = self.wi(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.dropout(hidden_states)
if (
isinstance(self.wo.weight, torch.Tensor)
and hidden_states.dtype != self.wo.weight.dtype
and self.wo.weight.dtype != torch.int8
):
hidden_states = hidden_states.to(self.wo.weight.dtype)
hidden_states = self.wo(hidden_states)
return hidden_states
# Copied from transformers.models.t5.modeling_t5.T5DenseGatedActDense with T5->UMT5
class UMT5DenseGatedActDense(nn.Module):
def __init__(self, config: UMT5Config):
super().__init__()
self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
self.act = ACT2FN[config.dense_act_fn]
def forward(self, hidden_states):
hidden_gelu = self.act(self.wi_0(hidden_states))
hidden_linear = self.wi_1(hidden_states)
hidden_states = hidden_gelu * hidden_linear
hidden_states = self.dropout(hidden_states)
# To make 8bit quantization work for google/flan-t5-xxl, self.wo is kept in float32.
# See https://github.com/huggingface/transformers/issues/20287
# we also make sure the weights are not in `int8` in case users will force `_keep_in_fp32_modules` to be `None``
if (
isinstance(self.wo.weight, torch.Tensor)
and hidden_states.dtype != self.wo.weight.dtype
and self.wo.weight.dtype != torch.int8
):
hidden_states = hidden_states.to(self.wo.weight.dtype)
hidden_states = self.wo(hidden_states)
return hidden_states
# Copied from transformers.models.t5.modeling_t5.T5LayerFF with T5->UMT5
class UMT5LayerFF(nn.Module):
def __init__(self, config: UMT5Config):
super().__init__()
if config.is_gated_act:
self.DenseReluDense = UMT5DenseGatedActDense(config)
else:
self.DenseReluDense = UMT5DenseActDense(config)
self.layer_norm = UMT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, hidden_states):
forwarded_states = self.layer_norm(hidden_states)
forwarded_states = self.DenseReluDense(forwarded_states)
hidden_states = hidden_states + self.dropout(forwarded_states)
return hidden_states
class UMT5Attention(nn.Module):
"""
T5's attention using relative_attention_bias.
"""
def __init__(self, config, has_relative_attention_bias=False):
super().__init__()
self.is_decoder = config.is_decoder
self.has_relative_attention_bias = has_relative_attention_bias
self.relative_attention_num_buckets = config.relative_attention_num_buckets
self.relative_attention_max_distance = config.relative_attention_max_distance
self.d_model = config.d_model
self.key_value_proj_dim = config.d_kv
self.n_heads = config.num_heads
self.dropout = config.dropout_rate
self.inner_dim = self.n_heads * self.key_value_proj_dim
# Mesh TensorFlow initialization to avoid scaling before softmax
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
if self.has_relative_attention_bias:
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
self.pruned_heads = set()
# save attention weights
self.save_attention = False
self.attn_gradients = None
self.attention_map = None
def save_attn_gradients(self, attn_gradients):
self.attn_gradients = attn_gradients
def get_attn_gradients(self):
return self.attn_gradients
def save_attention_map(self, attention_map):
self.attention_map = attention_map
def get_attention_map(self):
return self.attention_map
def _shape(self, projection: torch.Tensor) -> torch.Tensor:
new_projection_shape = projection.size()[:-1] + (self.n_heads, self.key_value_proj_dim)
# move heads to 2nd position (B, T, H * D) -> (B, T, H, D) -> (B, H, T, D)
new_projection = projection.view(new_projection_shape).permute(0, 2, 1, 3)
return new_projection
def _relative_position_bucket(self, relative_position):
"""
Adapted from Mesh Tensorflow:
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
Translate relative position to a bucket number for relative attention. The relative position is defined as
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
This should allow for more graceful generalization to longer sequences than the model has been trained on
Args:
relative_position: an int32 Tensor
bidirectional: a boolean - whether the attention is bidirectional
num_buckets: an integer
max_distance: an integer
Returns:
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
"""
relative_buckets = 0
num_buckets = self.relative_attention_num_buckets
max_distance = self.relative_attention_max_distance
if not self.is_decoder:
num_buckets //= 2
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
relative_position = torch.abs(relative_position)
else:
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
log_ratio = torch.log(relative_position.float() / max_exact) / math.log(max_distance / max_exact)
log_ratio = log_ratio * (num_buckets - max_exact)
relative_position_if_large = max_exact + log_ratio.to(torch.long)
relative_position_if_large = torch.min(
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
)
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
return relative_buckets
def compute_bias(self, query_length, key_length, device=None):
"""Compute binned relative position bias"""
if device is None:
device = self.relative_attention_bias.weight.device
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
relative_position = memory_position - context_position # shape (query_length, key_length)
relative_position_bucket = self._relative_position_bucket(relative_position)
values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
return values
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
):
is_cross_attention = encoder_hidden_states is not None
batch_size, seq_length = hidden_states.shape[:2]
# use encoder_hidden_states if cross attention
current_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
# checking that the `sequence_length` of the `past_key_value` is the same as the he provided
# `encoder_hidden_states` to support prefix tuning
if is_cross_attention and past_key_value and past_key_value[0].shape[2] == current_states.shape[1]:
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
else:
key_states = self._shape(self.k(current_states))
value_states = self._shape(self.v(current_states))
if past_key_value is not None and not is_cross_attention:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
query_states = self._shape(self.q(hidden_states))
attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2))
# compute positional bias
if self.has_relative_attention_bias:
query_length = seq_length
if past_key_value is not None:
query_length += past_key_value[0].shape[2]
position_bias = self.compute_bias(query_length, key_states.size(2), device=attention_scores.device)
else:
position_bias = torch.zeros(
(1, self.n_heads, seq_length, key_states.size(2)),
device=attention_scores.device,
dtype=attention_scores.dtype,
requires_grad=self.training,
)
if past_key_value is not None:
position_bias = position_bias[:, :, -hidden_states.size(1) :, :]
if attention_mask is not None:
position_bias = position_bias + attention_mask # (batch_size, n_heads, seq_length, key_length)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
attention_scores += position_bias
# (batch_size, n_heads, seq_length, key_length)
attn_weights = nn.functional.softmax(attention_scores.float(), dim=-1).type_as(attention_scores)
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
# Mask heads if we want to
if layer_head_mask is not None:
attn_weights = attn_weights * layer_head_mask
# save attention weights
if self.save_attention:
self.save_attention_map(attn_weights)
attn_weights.register_hook(self.save_attn_gradients)
# attn_output = torch.bmm(attn_probs, value_states) ?
context_states = torch.matmul(attn_weights, value_states)
# attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) ?
context_states = context_states.permute(0, 2, 1, 3).contiguous().view(batch_size, seq_length, -1)
attn_output = self.o(context_states)
return attn_output, attn_weights, past_key_value
class UMT5LayerSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.SelfAttention = UMT5Attention(config, has_relative_attention_bias=True)
self.layer_norm = UMT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
attention_mask=None,
layer_head_mask=None,
past_key_value=None,
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.SelfAttention(
normed_hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
)
hidden_states = hidden_states + self.dropout(attention_output[0])
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
return outputs
class UMT5LayerCrossAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.EncDecAttention = UMT5Attention(config, has_relative_attention_bias=False)
self.layer_norm = UMT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
layer_head_mask=None,
past_key_value=None,
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.EncDecAttention(
normed_hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
)
layer_output = hidden_states + self.dropout(attention_output[0])
outputs = (layer_output,) + attention_output[1:] # add attentions if we output them
return outputs
class UMT5Block(nn.Module):
def __init__(self, config):
super().__init__()
self.is_decoder = config.is_decoder
self.layer = nn.ModuleList()
self.layer.append(UMT5LayerSelfAttention(config))
if self.is_decoder:
self.layer.append(UMT5LayerCrossAttention(config))
self.layer.append(UMT5LayerFF(config))
def forward(
self,
hidden_states,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
layer_head_mask=None,
cross_attn_layer_head_mask=None,
past_key_value=None,
use_cache=False,
output_attentions=False,
):
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
hidden_states, self_attn_weights, present_key_value = self.layer[0](
hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
past_key_value=self_attn_past_key_value,
)
# clamp inf values to enable fp16 training
if hidden_states.dtype == torch.float16:
max_dtype = torch.finfo(hidden_states.dtype).max
clamp_value = torch.where(torch.isinf(hidden_states).any(), max_dtype - 1000, max_dtype)
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
do_cross_attention = self.is_decoder and encoder_hidden_states is not None
if do_cross_attention:
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.layer[1](
hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
)
# clamp inf values to enable fp16 training
if hidden_states.dtype == torch.float16:
max_dtype = torch.finfo(hidden_states.dtype).max
clamp_value = torch.where(torch.isinf(hidden_states).any(), max_dtype - 1000, max_dtype)
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
present_key_value += cross_attn_present_key_value
# Apply Feed Forward layer
hidden_states = self.layer[-1](hidden_states)
# clamp inf values to enable fp16 training
if hidden_states.dtype == torch.float16:
max_dtype = torch.finfo(hidden_states.dtype).max
clamp_value = torch.where(torch.isinf(hidden_states).any(), max_dtype - 1000, max_dtype)
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (
hidden_states,
present_key_value,
)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
return outputs
# Copied from transformers.models.t5.modeling_t5.T5ClassificationHead with T5->UMT5
class UMT5ClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config: UMT5Config):
super().__init__()
self.dense = nn.Linear(config.d_model, config.d_model)
self.dropout = nn.Dropout(p=config.classifier_dropout)
self.out_proj = nn.Linear(config.d_model, config.num_labels)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dropout(hidden_states)
hidden_states = self.dense(hidden_states)
hidden_states = torch.tanh(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.out_proj(hidden_states)
return hidden_states
class UMT5PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = UMT5Config
base_model_prefix = "transformer"
supports_gradient_checkpointing = True
_no_split_modules = ["UMT5Block"]
_keep_in_fp32_modules = ["wo"]
@property
def dummy_inputs(self):
input_ids = torch.tensor(DUMMY_INPUTS)
input_mask = torch.tensor(DUMMY_MASK)
dummy_inputs = {
"decoder_input_ids": input_ids,
"input_ids": input_ids,
"decoder_attention_mask": input_mask,
}
return dummy_inputs
def _init_weights(self, module):
"""Initialize the weights"""
factor = self.config.initializer_factor # Used for testing weights initialization
if isinstance(module, UMT5LayerNorm):
module.weight.data.fill_(factor * 1.0)
elif isinstance(
module,
(
UMT5Model,
),
):
# Mesh TensorFlow embeddings initialization
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624
module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0)
if hasattr(module, "lm_head") and not self.config.tie_word_embeddings:
module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0)
if hasattr(module, "qa_outputs"):
module.qa_outputs.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
module.qa_outputs.bias.data.zero_()
elif isinstance(module, UMT5ClassificationHead):
module.dense.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.dense, "bias") and module.dense.bias is not None:
module.dense.bias.data.zero_()
module.out_proj.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.out_proj, "bias") and module.out_proj.bias is not None:
module.out_proj.bias.data.zero_()
elif isinstance(module, UMT5DenseActDense):
# Mesh TensorFlow FF initialization
# See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56
# and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89
module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.wi, "bias") and module.wi.bias is not None:
module.wi.bias.data.zero_()
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
if hasattr(module.wo, "bias") and module.wo.bias is not None:
module.wo.bias.data.zero_()
elif isinstance(module, UMT5DenseGatedActDense):
module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None:
module.wi_0.bias.data.zero_()
module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None:
module.wi_1.bias.data.zero_()
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
if hasattr(module.wo, "bias") and module.wo.bias is not None:
module.wo.bias.data.zero_()
elif isinstance(module, UMT5Attention):
# Mesh TensorFlow attention initialization to avoid scaling before softmax
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136
d_model = self.config.d_model
key_value_proj_dim = self.config.d_kv
n_heads = self.config.num_heads
module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5))
module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5))
if module.has_relative_attention_bias:
module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5))
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, (UMT5Attention, UMT5Stack)):
module.gradient_checkpointing = value
def _shift_right(self, input_ids):
decoder_start_token_id = self.config.decoder_start_token_id
pad_token_id = self.config.pad_token_id
if decoder_start_token_id is None:
raise ValueError(
"self.model.config.decoder_start_token_id has to be defined. In UMT5 it is usually set to the pad_token_id."
"See UMT5 docs for more information."
)
# shift inputs to the right
if is_torch_fx_proxy(input_ids):
# Item assignment is not supported natively for proxies.
shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id)
shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1)
else:
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
shifted_input_ids[..., 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
class UMT5Stack(UMT5PreTrainedModel):
def __init__(self, config, embed_tokens=None):
super().__init__(config)
self.embed_tokens = embed_tokens
self.is_decoder = config.is_decoder
self.block = nn.ModuleList([UMT5Block(config) for i in range(config.num_layers)])
self.final_layer_norm = UMT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
# Initialize weights and apply final processing
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, new_embeddings):
self.embed_tokens = new_embeddings
def forward(
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
inputs_embeds=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
use_cache = use_cache if use_cache is not None else self.config.use_cache
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
err_msg_prefix = "decoder_" if self.is_decoder else ""
raise ValueError(
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
)
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
err_msg_prefix = "decoder_" if self.is_decoder else ""
raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds")
if inputs_embeds is None:
if self.embed_tokens is None:
raise ValueError("You have to initialize the model with valid token embeddings")
inputs_embeds = self.embed_tokens(input_ids)
batch_size, seq_length = input_shape
# required mask seq length can be calculated via length of past
mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length
if use_cache is True:
if not self.is_decoder:
raise ValueError(f"`use_cache` can only be set to `True` if {self} is used as a decoder")
if attention_mask is None:
attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
if self.is_decoder and encoder_attention_mask is None and encoder_hidden_states is not None:
encoder_seq_length = encoder_hidden_states.shape[1]
encoder_attention_mask = torch.ones(
batch_size, encoder_seq_length, device=inputs_embeds.device, dtype=torch.long
)
# initialize past_key_values with `None` if past does not exist
if past_key_values is None:
past_key_values = [None] * len(self.block)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# Prepare head mask if needed
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
present_key_value_states = () if use_cache else None
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.is_decoder else None
hidden_states = self.dropout(inputs_embeds)
for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)):
layer_head_mask = head_mask[i]
cross_attn_layer_head_mask = cross_attn_head_mask[i]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
return tuple(module(*inputs, use_cache, output_attentions))
return custom_forward
layer_outputs = checkpoint(
create_custom_forward(layer_module),
hidden_states,
extended_attention_mask,
encoder_hidden_states,
encoder_extended_attention_mask,
layer_head_mask,
cross_attn_layer_head_mask,
None, # past_key_value is always None with gradient checkpointing
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask=extended_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
layer_head_mask=layer_head_mask,
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if use_cache:
present_key_value_states += (layer_outputs[1],)
if output_attentions:
all_attentions += (layer_outputs[2],)
if self.is_decoder:
all_cross_attentions += (layer_outputs[3],)
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.dropout(hidden_states)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
present_key_value_states,
all_hidden_states,
all_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=present_key_value_states,
hidden_states=all_hidden_states,
attentions=all_attentions,
cross_attentions=all_cross_attentions,
)
UMT5_START_DOCSTRING = r"""
The UMT5 model was proposed in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It's an encoder decoder transformer pre-trained in a
text-to-text denoising generative setting.
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`UMT5Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
UMT5_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. UMT5 is a model with relative position embeddings so
you should be able to pad the inputs on both the right and the left.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for detail.
[What are input IDs?](../glossary#input-ids)
To know more on how to prepare `input_ids` for pretraining take a look a [UMT5 Training](./umt5#training).
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
UMT5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values`
is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`).
To know more on how to prepare `decoder_input_ids` for pretraining take a look at [UMT5
Training](./umt5#training).
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in
`[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at
the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
of `inputs_embeds`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
UMT5_ENCODER_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. UMT5 is a model with relative position embeddings so
you should be able to pad the inputs on both the right and the left.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for detail.
To know more on how to prepare `input_ids` for pretraining take a look a [UMT5 Training](./umt5#training).
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare UMT5 Model transformer outputting raw hidden-states without any specific head on top.",
UMT5_START_DOCSTRING,
)
class UMT5Model(UMT5PreTrainedModel):
r"""
Examples:
```python
>>> from transformers import UMT5Model, AutoTokenizer
>>> model = UMT5Model.from_pretrained("google/umt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/umt5-small")
>>> noisy_text = "UN Offizier sagt, dass weiter <extra_id_0> werden muss in Syrien."
>>> label = "<extra_id_0> verhandelt"
>>> inputs = tokenizer(inputs, return_tensors="pt")
>>> labels = tokenizer(label=label, return_tensors="pt")
>>> outputs = model(input_ids=inputs["input_ids"], decoder_input_ids=labels["input_ids"])
>>> hidden_states = outputs.last_hidden_state
```"""
model_type = "uumt5"
config_class = UMT5Config
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config):
super().__init__(config)
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.is_decoder = False
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = UMT5Stack(encoder_config, self.shared)
decoder_config = copy.deepcopy(config)
decoder_config.is_decoder = True
decoder_config.is_encoder_decoder = False
decoder_config.num_layers = config.num_decoder_layers
self.decoder = UMT5Stack(decoder_config, self.shared)
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.t5.modeling_t5.T5Model.get_input_embeddings
def get_input_embeddings(self):
return self.shared
# Copied from transformers.models.t5.modeling_t5.T5Model.set_input_embeddings
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
self.decoder.set_input_embeddings(new_embeddings)
# Copied from transformers.models.t5.modeling_t5.T5Model.get_encoder
def get_encoder(self):
return self.encoder
# Copied from transformers.models.t5.modeling_t5.T5Model.get_decoder
def get_decoder(self):
return self.decoder
# Copied from transformers.models.t5.modeling_t5.T5Model._prune_heads
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(UMT5_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
decoder_head_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
decoder_inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, UMT5Model
>>> tokenizer = AutoTokenizer.from_pretrained("google/umt5-small")
>>> model = UMT5Model.from_pretrained("google/umt5-small")
>>> input_ids = tokenizer(
... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
... ).input_ids # Batch size 1
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
>>> # preprocess: Prepend decoder_input_ids with start token which is pad token for UMT5Model.
>>> # This is not needed for torch's UMT5ForConditionalGeneration as it does this internally using labels arg.
>>> decoder_input_ids = model._shift_right(decoder_input_ids)
>>> # forward pass
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
>>> last_hidden_states = outputs.last_hidden_state
```"""
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Encode if needed (training, first prediction pass)
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
hidden_states = encoder_outputs[0]
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
past_key_values=past_key_values,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
# start of ranking prompter code
from contextlib import nullcontext
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from .configuration_rankingprompter import RankingPrompterConfig
@dataclass
class RankingPrompterForPreTrainingOutput:
loss: torch.FloatTensor = None
logits: torch.FloatTensor = None
@dataclass
class RankingPrompterOutput:
loss: torch.FloatTensor = None
logits: torch.FloatTensor = None
lm_logits: torch.FloatTensor = None
loss_lm: torch.FloatTensor = None
loss_ranking: torch.FloatTensor = None
class RankingPrompterForPreTraining(UMT5Model):
config_class = RankingPrompterConfig
_tied_weights_keys = [
"encoder.embed_tokens.weight",
"decoder.embed_tokens.weight",
]
def __init__(self, config):
# encoder, decoder and shared are from UMT5Model
super().__init__(config)
# add ranking head
self.ranking_head = nn.Linear(config.d_model, 1)
# Initialize weights and apply final processing
self.post_init()
# ctx for mixed precision training
self.ctx = nullcontext()
def enable_amp_ctx(self, device_type="cuda", dtype=torch.bfloat16):
self.ctx = torch.amp.autocast(device_type=device_type, dtype=dtype)
def disable_amp_ctx(self):
self.ctx = nullcontext()
def forward(
self,
document_input_ids: Optional[torch.LongTensor] = None,
document_attention_mask: Optional[torch.FloatTensor] = None,
question_input_ids: Optional[torch.LongTensor] = None,
question_attention_mask: Optional[torch.BoolTensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], RankingPrompterForPreTrainingOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ...,
config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
labels in `[0, ..., config.vocab_size]`
Returns:
```"""
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# document_input_ids: [batch_size, num_doc, doc_seq_len]
batch_size, num_doc, doc_seq_len = document_input_ids.shape
#
document_input_ids = document_input_ids.view(-1, doc_seq_len)
# to [batch_size * num_doc, doc_seq_len]
document_attention_mask = document_attention_mask.view(-1, doc_seq_len)
# Convert encoder inputs in embeddings if needed
with self.ctx:
encoder_outputs = self.encoder(
input_ids=document_input_ids,
attention_mask=document_attention_mask,
return_dict=return_dict,
)
document_embeds = encoder_outputs[0]
# repeat question inputs for each document
# question_input_ids: [batch_size, question_seq_len]
question_seq_len = question_input_ids.shape[1]
question_input_ids_expand = (
question_input_ids.unsqueeze(1)
.expand(-1, num_doc, -1)
.reshape(-1, question_seq_len)
) # [batch_size * num_doc, question_seq_len]
question_attention_mask_expand = (
question_attention_mask.unsqueeze(1)
.expand(-1, num_doc, -1)
.reshape(-1, question_seq_len)
) # [batch_size * num_doc, question_seq_len]
# Decode
with self.ctx:
decoder_outputs = self.decoder(
input_ids=question_input_ids_expand,
attention_mask=question_attention_mask_expand,
past_key_values=past_key_values,
encoder_hidden_states=document_embeds,
encoder_attention_mask=document_attention_mask,
use_cache=use_cache,
return_dict=return_dict,
)
# [batch_size * num_doc, soft_prompt_len + question_seq_len, hidden_size]
sequence_output = decoder_outputs[0]
# [batch_size * num_doc, soft_prompt_len, hidden_size]
question_seq_len = sequence_output.size(1)
# [batch_size, num_doc, soft_prompt_len, hidden_size]
soft_prompt_output = sequence_output.view(
batch_size, num_doc, question_seq_len, -1
)
question_attention_mask_expand = question_attention_mask_expand.view(
batch_size, num_doc, question_seq_len
)
# apply question attention mask
soft_prompt_output = soft_prompt_output * question_attention_mask_expand.unsqueeze(-1)
# [batch_size, num_doc, self.num_soft_prompt_tokens, hidden_size] -> [batch_size, num_doc]
ranking_logits = self.ranking_head(soft_prompt_output.mean(dim=2)).view(batch_size, num_doc)
# rank loss
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss(ignore_index=-100, label_smoothing=0.1)
loss = loss_fct(ranking_logits, labels)
if not return_dict:
output = (ranking_logits,) + decoder_outputs[1:] + encoder_outputs
return ((loss,) + output) if loss is not None else output
return RankingPrompterForPreTrainingOutput(
loss=loss,
logits=ranking_logits
)
class RankingPrompter(UMT5Model):
config_class = RankingPrompterConfig
_tied_weights_keys = [
"encoder.embed_tokens.weight",
"decoder.embed_tokens.weight",
]
def __init__(self, config):
# encoder, decoder and shared are from UMT5Model
super().__init__(config)
# add ranking head
self.ranking_head = nn.Linear(config.d_model, 1)
# Initialize weights and apply final processing
self.post_init()
# ctx for mixed precision training
self.ctx = nullcontext()
def enable_amp_ctx(self, device_type="cuda", dtype=torch.bfloat16):
self.ctx = torch.amp.autocast(device_type=device_type, dtype=dtype)
def disable_amp_ctx(self):
self.ctx = nullcontext()
def encode_document(self, document_input_ids, document_attention_mask):
# input shape: [batch_size * num_doc, doc_seq_len]
# Convert encoder inputs in embeddings if needed
with self.ctx:
encoder_outputs = self.encoder(
input_ids=document_input_ids,
attention_mask=document_attention_mask,
return_dict=False,
)
return encoder_outputs
def decode_answer(
self,
question_input_ids,
question_attention_mask,
document_embeds,
document_attention_mask,
answer_input_ids=None,
answer_attention_mask=None
):
if answer_input_ids is not None and answer_attention_mask is not None:
# append answer input ids to question input ids
question_input_ids = torch.cat([question_input_ids, answer_input_ids], dim=1)
question_attention_mask = torch.cat([question_attention_mask, answer_attention_mask], dim=1)
answer_outputs = self.decoder(
input_ids=question_input_ids,
attention_mask=question_attention_mask,
encoder_hidden_states=document_embeds,
encoder_attention_mask=document_attention_mask,
return_dict=True,
)
return answer_outputs
def forward(
self,
document_input_ids: Optional[torch.LongTensor] = None,
document_attention_mask: Optional[torch.FloatTensor] = None,
question_input_ids: Optional[torch.LongTensor] = None,
question_attention_mask: Optional[torch.BoolTensor] = None,
answer_input_ids: Optional[Tuple[Tuple[torch.Tensor]]] = None,
answer_attention_mask: Optional[Tuple[Tuple[torch.Tensor]]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], RankingPrompterOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ...,
config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
labels in `[0, ..., config.vocab_size]`
Returns:
```"""
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
if len(document_input_ids.shape) == 2:
# make [batch_size, doc_seq_len] -> [batch_size, 1, doc_seq_len]
document_input_ids = document_input_ids.unsqueeze(1)
document_attention_mask = document_attention_mask.unsqueeze(1)
# document_input_ids: [batch_size, num_doc, doc_seq_len]
batch_size, num_doc, doc_seq_len = document_input_ids.shape
document_input_ids = document_input_ids.view(-1, doc_seq_len)
# to [batch_size * num_doc, doc_seq_len]
document_attention_mask = document_attention_mask.view(-1, doc_seq_len)
encoder_outputs = self.encode_document(document_input_ids, document_attention_mask)
document_embeds = encoder_outputs[0]
# repeat question inputs for each document
# question_input_ids: [batch_size, question_seq_len]
question_seq_len = question_input_ids.shape[1]
question_input_ids_expand = (
question_input_ids.unsqueeze(1)
.expand(-1, num_doc, -1)
.reshape(-1, question_seq_len)
) # [batch_size * num_doc, question_seq_len]
question_attention_mask_expand = (
question_attention_mask.unsqueeze(1)
.expand(-1, num_doc, -1)
.reshape(-1, question_seq_len)
) # [batch_size * num_doc, question_seq_len]
# Decode
with self.ctx:
decoder_outputs = self.decoder(
input_ids=question_input_ids_expand,
attention_mask=question_attention_mask_expand,
encoder_hidden_states=document_embeds,
encoder_attention_mask=document_attention_mask,
use_cache=False,
return_dict=True,
)
# [batch_size * num_doc, soft_prompt_len + question_seq_len, hidden_size]
sequence_output = decoder_outputs.last_hidden_state
# [batch_size * num_doc, soft_prompt_len, hidden_size]
question_seq_len = sequence_output.size(1)
# [batch_size, num_doc, soft_prompt_len, hidden_size]
soft_prompt_output = sequence_output.view(
batch_size, num_doc, question_seq_len, -1
)
question_attention_mask_expand = question_attention_mask_expand.view(
batch_size, num_doc, question_seq_len
)
# apply question attention mask
soft_prompt_output = soft_prompt_output * question_attention_mask_expand.unsqueeze(-1)
# get the real mean by the real length
soft_prompt_output_mean = soft_prompt_output.sum(dim=2) / question_attention_mask_expand.sum(dim=2, keepdim=True)
# [batch_size, num_doc, self.num_soft_prompt_tokens, hidden_size] -> [batch_size, num_doc]
ranking_logits = self.ranking_head(soft_prompt_output_mean).view(batch_size, num_doc)
# rank loss
loss_ranking = None
if labels is not None:
loss_fct = CrossEntropyLoss(ignore_index=-100, label_smoothing=0.1)
loss_ranking = loss_fct(ranking_logits, labels)
# append bos token id to question input ids
question_input_ids = torch.cat(
[question_input_ids, torch.ones_like(question_input_ids[:, :1]).fill_(self.config.decoder_start_token_id)], dim=1)
question_attention_mask = torch.cat(
[question_attention_mask, torch.ones_like(question_attention_mask[:, :1])], dim=1)
# only take the first document for answer generation training
answer_outputs = self.decode_answer(question_input_ids,
question_attention_mask,
document_embeds[::num_doc],
document_attention_mask[::num_doc],
answer_input_ids,
answer_attention_mask)
# lm loss
loss_lm = None
lm_logits = None
if answer_input_ids is not None:
# fill in question_input_ids with -100
question_input_mask = torch.zeros_like(question_input_ids).fill_(-100)
# mask padding token in answer_input_ids with -100
answer_input_ids = answer_input_ids.masked_fill(answer_input_ids == self.config.pad_token_id, -100)
# [batch_size, question_seq_len + answer_seq_len, hidden_size]
lm_labels = torch.cat([question_input_mask, answer_input_ids], dim=1)[:, 1:].contiguous()
lm_logits = (answer_outputs.last_hidden_state @ self.decoder.embed_tokens.weight.t())[:, :-1, :].contiguous()
loss_fct = CrossEntropyLoss(ignore_index=-100, label_smoothing=0.1)
loss_lm = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), lm_labels.view(-1))
if loss_ranking is not None and loss_lm is not None:
loss = loss_ranking + loss_lm
elif loss_ranking is not None:
loss = loss_ranking
elif loss_lm is not None:
loss = loss_lm
else:
loss = None
if not return_dict:
output = (ranking_logits,) + decoder_outputs[1:] + encoder_outputs
return ((loss,) + output) if loss is not None else output
return RankingPrompterOutput(
loss=loss,
logits=ranking_logits,
lm_logits=lm_logits,
loss_lm=loss_lm,
loss_ranking=loss_ranking,
)
def generate_answer(
self,
document_input_ids: Optional[torch.LongTensor] = None,
document_attention_mask: Optional[torch.FloatTensor] = None,
question_input_ids: Optional[torch.LongTensor] = None,
question_attention_mask: Optional[torch.BoolTensor] = None
):
if len(document_input_ids.shape) == 2:
# make [batch_size, doc_seq_len] -> [batch_size, 1, doc_seq_len]
document_input_ids = document_input_ids.unsqueeze(1)
document_attention_mask = document_attention_mask.unsqueeze(1)
# document_input_ids: [batch_size, num_doc, doc_seq_len]
batch_size, num_doc, doc_seq_len = document_input_ids.shape
document_input_ids = document_input_ids.view(-1, doc_seq_len)
# to [batch_size * num_doc, doc_seq_len]
document_attention_mask = document_attention_mask.view(-1, doc_seq_len)
document_embeds = self.encode_document(document_input_ids, document_attention_mask)[0]
# append bos token id to question input ids
question_input_ids = torch.cat(
[question_input_ids, torch.ones_like(question_input_ids[:, :1]).fill_(self.config.decoder_start_token_id)], dim=1)
question_attention_mask = torch.cat(
[question_attention_mask, torch.ones_like(question_attention_mask[:, :1])], dim=1)
answer_outputs = self.decode_answer(question_input_ids,
question_attention_mask,
document_embeds[::num_doc],
document_attention_mask[:num_doc])
lm_logits = answer_outputs.last_hidden_state @ self.decoder.embed_tokens.weight.t()
return lm_logits[:, -1:, :]
def compute_ranking_grad_cam(
self,
document_input_ids,
document_attention_mask,
question_input_ids,
question_attention_mask,
block_num=-1,
reduction="sum"):
# 设置模型为evaluation模式, 开启保存attention map
self.eval()
attention_layer = self.decoder.block[block_num].layer[-2].EncDecAttention
attention_layer.save_attention = True
# 正向传播以获取特征图
encoder_outputs = self.encode_document(document_input_ids, document_attention_mask)
document_embeds = encoder_outputs[0]
# 正向传播解码器以获取Grad-CAM
decoder_outputs = self.decoder(
input_ids=question_input_ids,
attention_mask=question_attention_mask,
encoder_hidden_states=document_embeds,
encoder_attention_mask=document_attention_mask,
use_cache=False,
return_dict=True,
)
# get grads
soft_prompt_output = decoder_outputs.last_hidden_state * question_attention_mask.unsqueeze(-1)
ranking_logits = self.ranking_head(soft_prompt_output.mean(dim=1)).view(-1)
loss = ranking_logits.sum()
self.zero_grad()
loss.backward()
# compute grad cam
with torch.no_grad():
# grads and cams [bsz, num_head, ques_len, doc_len]
grads = attention_layer.get_attn_gradients()
cams = attention_layer.get_attention_map()
gradcams = cams * grads
# average over heads -> [bsz, ques_len, doc_len]
gradcams = gradcams.mean(dim=1)
# apply relu
gradcams = gradcams.relu()
# apply question attention mask
gradcams = gradcams * question_attention_mask.unsqueeze(-1)
if reduction == "sum":
gradcams = gradcams.sum(dim=1)
elif reduction == "mean":
gradcams = gradcams.mean(dim=1)
return gradcams
def compute_lm_grad_cam(
self,
document_input_ids,
document_attention_mask,
question_input_ids,
question_attention_mask,
max_new_tokens=10,
block_num=-1,
reduction="sum"):
# 设置模型为evaluation模式, 开启保存attention map
self.eval()
attention_layer = self.decoder.block[block_num].layer[-2].EncDecAttention
attention_layer.save_attention = True
# 正向传播以获取特征图
encoder_outputs = self.encode_document(document_input_ids, document_attention_mask)
document_embeds = encoder_outputs[0]
# append bos token id to question input ids
question_input_ids = torch.cat(
[question_input_ids, torch.ones_like(question_input_ids[:, :1]).fill_(self.config.decoder_start_token_id)], dim=1)
question_attention_mask = torch.cat(
[question_attention_mask, torch.ones_like(question_attention_mask[:, :1])], dim=1)
gradcams_output = []
tokens_output = []
for _ in range(max_new_tokens):
# 正向传播解码器以获取Grad-CAM
decoder_outputs = self.decoder(
input_ids=question_input_ids,
attention_mask=question_attention_mask,
encoder_hidden_states=document_embeds,
encoder_attention_mask=document_attention_mask,
use_cache=False,
return_dict=True,
)
# get grads
lm_logits = (decoder_outputs.last_hidden_state @ self.decoder.embed_tokens.weight.t())[:, -1:, :].contiguous()
max_logits, max_indices = lm_logits.max(dim=-1)
loss = max_logits.sum()
question_input_ids = torch.cat([question_input_ids, max_indices], dim=-1)
question_attention_mask = torch.cat([question_attention_mask, torch.ones_like(question_attention_mask[:, :1])], dim=1)
tokens_output.append(max_indices)
self.zero_grad()
loss.backward(retain_graph=True)
# compute grad cam
with torch.no_grad():
# grads and cams [bsz, num_head, ques_len, doc_len]
grads = attention_layer.get_attn_gradients()
cams = attention_layer.get_attention_map()
gradcams = cams[:, :, -1:, :] * grads[:, :, -1:, :]
# average over heads -> [bsz, 1, doc_len]
gradcams = gradcams.mean(dim=1)
# apply relu
gradcams = gradcams.relu()
gradcams_output.append(gradcams)
# concat to [bsz, max_new_tokens, doc_len]
gradcams_output = torch.cat(gradcams_output, dim=1)
# concat to [bsz, max_new_tokens]
tokens_output = torch.cat(tokens_output, dim=1)
# mask eos token gradcam
gradcams_output = gradcams_output * (tokens_output != self.config.eos_token_id).unsqueeze(-1)
if reduction == "sum":
gradcams_output = gradcams_output.sum(dim=1)
elif reduction == "mean":
gradcams_output = gradcams_output.mean(dim=1)
return tokens_output, gradcams_output
def split_context_by_token_id(
self,
document_input_ids,
gradcams,
split_token_id = 310,
):
bsz = document_input_ids.shape[0]
batch_doc_splits = []
for i in range(bsz):
one_doc = document_input_ids[i]
grad_cam = gradcams[i]
# find the split token index
split_idx = (one_doc == split_token_id).nonzero(as_tuple=True)[0]
# split the document input ids
num_split = len(split_idx)
if num_split > 0:
one_doc_splits = []
activation_splits = []
for i in range(num_split):
if i == 0:
# first split
one_doc_splits.append(one_doc[:split_idx[i]])
activation = grad_cam[:split_idx[i]].mean()
activation_splits.append(activation)
else:
one_doc_splits.append(one_doc[split_idx[i-1]+1:split_idx[i]])
activation = grad_cam[split_idx[i-1]+1:split_idx[i]].mean()
activation_splits.append(activation)
# append the last split
one_doc_splits.append(one_doc[split_idx[-1]+1:])
activation = grad_cam[split_idx[-1]+1:].mean()
activation_splits.append(activation)
else:
# no split token in the document
one_doc_splits = [one_doc]
activation_splits = [grad_cam.mean()]
#
batch_doc_splits.append((one_doc_splits, activation_splits))
return batch_doc_splits
def drop_context_by_activation(
self,
batch_doc_splits,
keep_ratio=0.5,
):
# if keep ratio is zero, raise a error
if keep_ratio == 0 or keep_ratio < 0 or keep_ratio == 0.0:
raise ValueError("keep ratio should not be zero or negative")
batch_doc_splits_drop = []
for one_doc_splits, activation_splits in batch_doc_splits:
sorted_idx = sorted(range(len(activation_splits)), key=lambda k: activation_splits[k], reverse=True)
# at least keep one context
num_drop = max(int(len(sorted_idx) * keep_ratio), 1)
# keep order of document
sorted_idx = sorted(sorted_idx[:num_drop])
one_doc_splits_drop = [one_doc_splits[i] for i in sorted_idx]
batch_doc_splits_drop.append(one_doc_splits_drop)
return batch_doc_splits_drop
def drop_context_by_avg_rank(
self,
batch_doc_splits_ranking,
batch_doc_splits_lm,
keep_ratio=0.5,
):
# if keep ratio is zero, raise a error
if keep_ratio == 0 or keep_ratio < 0 or keep_ratio == 0.0:
raise ValueError("keep ratio should not be zero or negative")
batch_doc_splits_drop = []
bsz = len(batch_doc_splits_ranking)
for i in range(bsz):
one_doc_splits_ranking, activation_splits_ranking = batch_doc_splits_ranking[i]
one_doc_splits_lm, activation_splits_lm = batch_doc_splits_lm[i]
# sort by ranking activation
ranking_sorted_idx = sorted(range(len(activation_splits_ranking)), key=lambda k: activation_splits_ranking[k], reverse=True)
lm_sorted_idx = sorted(range(len(activation_splits_lm)), key=lambda k: activation_splits_lm[k], reverse=True)
# sort by average rank of ranking and lm
avg_rank = [(ranking_sorted_idx.index(i) + lm_sorted_idx.index(i)) / 2 for i in range(len(ranking_sorted_idx))]
sorted_idx = sorted(range(len(avg_rank)), key=lambda k: avg_rank[k])
# at least keep one context
num_drop = max(int(len(sorted_idx) * keep_ratio), 1)
# keep order of document
sorted_idx = sorted(sorted_idx[:num_drop])
one_doc_splits_drop = [one_doc_splits_ranking[i] for i in sorted_idx]
batch_doc_splits_drop.append(one_doc_splits_drop)
return batch_doc_splits_drop
def compress_context_by_activation(
self,
document_input_ids,
gradcams_output,
keep_ratio=0.5,
):
# split context by split token id
batch_doc_splits = self.split_context_by_token_id(document_input_ids, gradcams_output)
# drop context by activation
batch_doc_splits_drop = self.drop_context_by_activation(batch_doc_splits, keep_ratio)
return batch_doc_splits_drop
def compress_context(
self,
document_input_ids,
ranking_gradcams,
lm_gradcams,
keep_ratio=0.5,
):
# split context by split token id
batch_doc_splits_ranking = self.split_context_by_token_id(document_input_ids, ranking_gradcams)
batch_doc_splits_lm = self.split_context_by_token_id(document_input_ids, lm_gradcams)
# drop context by activation
batch_doc_splits_drop = self.drop_context_by_avg_rank(
batch_doc_splits_ranking, batch_doc_splits_lm, keep_ratio)
return batch_doc_splits_drop