honzapucalek's picture
Model save
f960ee6 verified
|
raw
history blame
2.13 kB
metadata
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - generated_from_trainer
datasets:
  - impaired_v3_independent_all
metrics:
  - wer
model-index:
  - name: impaired-v3-independent-all
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: impaired_v3_independent_all
          type: impaired_v3_independent_all
          config: cs
          split: test
          args: cs
        metrics:
          - name: Wer
            type: wer
            value: 0.4068825910931174

impaired-v3-independent-all

This model is a fine-tuned version of openai/whisper-large-v3 on the impaired_v3_independent_all dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4531
  • Wer: 0.4069

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0077 13.99 1000 1.0277 0.3968
0.0008 27.97 2000 1.2058 0.4008
0.0001 41.96 3000 1.3848 0.4069
0.0001 55.94 4000 1.4363 0.3998
0.0001 69.93 5000 1.4531 0.4069

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1