hongpingjun98 commited on
Commit
88b4b8e
1 Parent(s): 96efb1d

Model save

Browse files
Files changed (2) hide show
  1. README.md +111 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - sem_eval_2024_task_2
8
+ metrics:
9
+ - accuracy
10
+ - precision
11
+ - recall
12
+ - f1
13
+ model-index:
14
+ - name: results2
15
+ results:
16
+ - task:
17
+ name: Text Classification
18
+ type: text-classification
19
+ dataset:
20
+ name: sem_eval_2024_task_2
21
+ type: sem_eval_2024_task_2
22
+ config: sem_eval_2024_task_2_source
23
+ split: validation
24
+ args: sem_eval_2024_task_2_source
25
+ metrics:
26
+ - name: Accuracy
27
+ type: accuracy
28
+ value: 0.715
29
+ - name: Precision
30
+ type: precision
31
+ value: 0.7186959617536364
32
+ - name: Recall
33
+ type: recall
34
+ value: 0.7150000000000001
35
+ - name: F1
36
+ type: f1
37
+ value: 0.7137907659862921
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # results2
44
+
45
+ This model is a fine-tuned version of [MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli](https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli) on the sem_eval_2024_task_2 dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 1.7766
48
+ - Accuracy: 0.715
49
+ - Precision: 0.7187
50
+ - Recall: 0.7150
51
+ - F1: 0.7138
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 5e-05
71
+ - train_batch_size: 16
72
+ - eval_batch_size: 16
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - lr_scheduler_warmup_steps: 500
77
+ - num_epochs: 20
78
+ - mixed_precision_training: Native AMP
79
+
80
+ ### Training results
81
+
82
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
83
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
84
+ | 0.6998 | 1.0 | 107 | 0.6713 | 0.6 | 0.6214 | 0.6000 | 0.5815 |
85
+ | 0.7015 | 2.0 | 214 | 0.6502 | 0.68 | 0.7143 | 0.6800 | 0.6667 |
86
+ | 0.6755 | 3.0 | 321 | 0.6740 | 0.53 | 0.6579 | 0.53 | 0.4107 |
87
+ | 0.6605 | 4.0 | 428 | 0.6061 | 0.64 | 0.6502 | 0.64 | 0.6338 |
88
+ | 0.5918 | 5.0 | 535 | 0.5675 | 0.695 | 0.7023 | 0.6950 | 0.6922 |
89
+ | 0.5717 | 6.0 | 642 | 0.5945 | 0.685 | 0.6953 | 0.685 | 0.6808 |
90
+ | 0.4655 | 7.0 | 749 | 0.5644 | 0.68 | 0.6801 | 0.6800 | 0.6800 |
91
+ | 0.3407 | 8.0 | 856 | 0.7529 | 0.7 | 0.7029 | 0.7 | 0.6989 |
92
+ | 0.3539 | 9.0 | 963 | 0.7211 | 0.69 | 0.6901 | 0.69 | 0.6900 |
93
+ | 0.2695 | 10.0 | 1070 | 0.7760 | 0.685 | 0.6905 | 0.685 | 0.6827 |
94
+ | 0.1666 | 11.0 | 1177 | 1.1053 | 0.71 | 0.7188 | 0.71 | 0.7071 |
95
+ | 0.1648 | 12.0 | 1284 | 1.1662 | 0.72 | 0.7258 | 0.72 | 0.7182 |
96
+ | 0.1229 | 13.0 | 1391 | 1.2760 | 0.735 | 0.7438 | 0.735 | 0.7326 |
97
+ | 0.0737 | 14.0 | 1498 | 1.5943 | 0.7 | 0.7029 | 0.7 | 0.6989 |
98
+ | 0.1196 | 15.0 | 1605 | 1.5407 | 0.705 | 0.7085 | 0.7050 | 0.7037 |
99
+ | 0.0389 | 16.0 | 1712 | 1.6411 | 0.69 | 0.7016 | 0.69 | 0.6855 |
100
+ | 0.0199 | 17.0 | 1819 | 1.7139 | 0.685 | 0.6919 | 0.685 | 0.6821 |
101
+ | 0.0453 | 18.0 | 1926 | 1.6549 | 0.71 | 0.7121 | 0.71 | 0.7093 |
102
+ | 0.0536 | 19.0 | 2033 | 1.7612 | 0.71 | 0.7142 | 0.71 | 0.7086 |
103
+ | 0.0035 | 20.0 | 2140 | 1.7766 | 0.715 | 0.7187 | 0.7150 | 0.7138 |
104
+
105
+
106
+ ### Framework versions
107
+
108
+ - Transformers 4.35.2
109
+ - Pytorch 2.1.0+cu121
110
+ - Datasets 2.16.1
111
+ - Tokenizers 0.15.0
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:44d033aeb35768280d621861ce13bc203e97b1a93995d9d882fb7fefac46c4cc
3
  size 737719272
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39eaaa4d2fd995d8673d3c62a382f62ee87ae677ebbd763e18a263c219f13d93
3
  size 737719272