BioMedNLP_DeBERTa / README.md
hongpingjun98's picture
Model save
c93ccee
|
raw
history blame
6.73 kB
metadata
license: mit
base_model: MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
tags:
  - generated_from_trainer
datasets:
  - sem_eval_2024_task_2
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: results2
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: sem_eval_2024_task_2
          type: sem_eval_2024_task_2
          config: sem_eval_2024_task_2_source
          split: validation
          args: sem_eval_2024_task_2_source
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.76
          - name: Precision
            type: precision
            value: 0.7601040416166467
          - name: Recall
            type: recall
            value: 0.76
          - name: F1
            type: f1
            value: 0.75997599759976

results2

This model is a fine-tuned version of MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli on the sem_eval_2024_task_2 dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1827
  • Accuracy: 0.76
  • Precision: 0.7601
  • Recall: 0.76
  • F1: 0.7600

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.6925 1.0 107 0.6665 0.6 0.6457 0.6 0.5660
0.6729 2.0 214 0.6025 0.69 0.6964 0.69 0.6875
0.6857 3.0 321 0.6071 0.665 0.7531 0.665 0.6331
0.6667 4.0 428 0.5650 0.695 0.7157 0.6950 0.6875
0.6168 5.0 535 0.5036 0.75 0.7504 0.75 0.7499
0.5165 6.0 642 0.6248 0.67 0.6701 0.67 0.6700
0.4087 7.0 749 0.5246 0.735 0.7379 0.7350 0.7342
0.3083 8.0 856 0.6130 0.7 0.7 0.7 0.7
0.2909 9.0 963 0.7584 0.735 0.7723 0.7350 0.7256
0.319 10.0 1070 0.7350 0.72 0.7360 0.72 0.7152
0.1812 11.0 1177 0.9320 0.715 0.7176 0.7150 0.7141
0.2824 12.0 1284 0.9723 0.705 0.7336 0.7050 0.6957
0.2662 13.0 1391 0.8676 0.72 0.7222 0.72 0.7193
0.1641 14.0 1498 0.9450 0.71 0.7103 0.71 0.7099
0.2264 15.0 1605 1.1613 0.675 0.6764 0.675 0.6743
0.2077 16.0 1712 1.3497 0.715 0.7214 0.7150 0.7129
0.1767 17.0 1819 1.4154 0.705 0.7075 0.7050 0.7041
0.1751 18.0 1926 1.2369 0.735 0.7350 0.735 0.7350
0.1195 19.0 2033 1.1152 0.72 0.7334 0.72 0.7159
0.0507 20.0 2140 1.4853 0.715 0.7152 0.715 0.7149
0.0544 21.0 2247 1.7174 0.725 0.7302 0.7250 0.7234
0.0648 22.0 2354 1.7327 0.71 0.7121 0.71 0.7093
0.0039 23.0 2461 1.8211 0.725 0.7268 0.7250 0.7244
0.0153 24.0 2568 1.8315 0.715 0.7176 0.7150 0.7141
0.0017 25.0 2675 1.7446 0.72 0.7232 0.72 0.7190
0.0188 26.0 2782 1.6413 0.72 0.7274 0.72 0.7177
0.0168 27.0 2889 1.8013 0.73 0.7315 0.73 0.7296
0.0355 28.0 2996 2.0405 0.725 0.7354 0.725 0.7219
0.0168 29.0 3103 1.5087 0.735 0.7350 0.735 0.7350
0.0409 30.0 3210 1.5272 0.72 0.7244 0.72 0.7186
0.004 31.0 3317 1.9978 0.715 0.7214 0.7150 0.7129
0.0002 32.0 3424 1.9760 0.72 0.7244 0.72 0.7186
0.0111 33.0 3531 1.9985 0.74 0.7409 0.74 0.7398
0.052 34.0 3638 1.9607 0.73 0.7334 0.73 0.7290
0.0263 35.0 3745 1.7118 0.75 0.7525 0.75 0.7494
0.0101 36.0 3852 1.9553 0.755 0.7571 0.755 0.7545
0.0001 37.0 3959 2.0064 0.75 0.7537 0.75 0.7491
0.0186 38.0 4066 2.1726 0.74 0.7404 0.74 0.7399
0.0046 39.0 4173 2.1083 0.755 0.7550 0.755 0.7550
0.0042 40.0 4280 1.9944 0.76 0.7609 0.76 0.7598
0.0178 41.0 4387 2.0096 0.76 0.7604 0.76 0.7599
0.0089 42.0 4494 2.0431 0.765 0.7652 0.765 0.7649
0.0095 43.0 4601 2.0662 0.76 0.7604 0.76 0.7599
0.0162 44.0 4708 2.1703 0.745 0.7450 0.745 0.7450
0.0001 45.0 4815 2.1525 0.76 0.7601 0.76 0.7600
0.0001 46.0 4922 2.1581 0.76 0.7601 0.76 0.7600
0.0086 47.0 5029 2.1665 0.76 0.7601 0.76 0.7600
0.0088 48.0 5136 2.1747 0.76 0.7601 0.76 0.7600
0.0044 49.0 5243 2.1812 0.76 0.7601 0.76 0.7600
0.0043 50.0 5350 2.1827 0.76 0.7601 0.76 0.7600

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0