jan-hq commited on
Commit
645e74f
1 Parent(s): 354e13f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +236 -161
README.md CHANGED
@@ -1,199 +1,274 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
  ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
63
 
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
 
 
 
 
 
 
 
 
 
100
 
101
- [More Information Needed]
 
102
 
103
- ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
 
107
- ### Testing Data, Factors & Metrics
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108
 
109
- #### Testing Data
 
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
 
112
 
113
- [More Information Needed]
114
 
115
- #### Factors
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
 
119
- [More Information Needed]
 
120
 
121
- #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
 
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
  **BibTeX:**
176
 
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
+ datasets:
3
+ - jan-hq/instruction-speech-v1.5
4
+ language:
5
+ - en
6
+ license: apache-2.0
7
+ tags:
8
+ - sound language model
9
  ---
10
 
 
 
 
 
 
 
11
  ## Model Details
12
 
13
+ We have developed and released the family [Jan-Llama3s](https://huggingface.co/collections/jan-hq/jan-llama3-668e4dad446c8736208dca4f). This family is natively understanding audio and text input.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
+ We continue to expand our last checkpoint [jan-hq/Jan-Llama3s-0708](https://huggingface.co/jan-hq/Jan-Llama3s-0708) with 1.3B tokens from [Instruction Speech v1.5](https://huggingface.co/datasets/jan-hq/instruction-speech-v1) dataset.
16
 
17
+ **Model developers** Homebrew Research.
18
 
19
+ **Input** Text and sound.
20
 
21
+ **Output** Text.
22
 
23
+ **Model Architecture** Llama-3.
24
 
25
+ **Language(s):** English.
26
 
27
+ ## Intended Use
28
 
29
+ **Intended Use Cases** This family is primarily intended for research applications. This version aims to further improve the LLM on sound understanding capabilities.
30
 
31
+ **Out-of-scope** The use of Jan-Llama3s in any manner that violates applicable laws or regulations is strictly prohibited.
 
 
 
 
32
 
33
  ## How to Get Started with the Model
34
 
35
+ First, we need to convert the audio file to sound tokens
36
+
37
+ ```python
38
+ import torch
39
+ import torchaudio
40
+ from encodec import EncodecModel
41
+ from encodec.utils import convert_audio
42
+
43
+ def audio_to_sound_tokens(audio_path, target_bandwidth=1.5, device="cuda"):
44
+ # Initialize Encodec
45
+ model = EncodecModel.encodec_model_24khz()
46
+ model.set_target_bandwidth(target_bandwidth)
47
+ model.to(device)
48
+
49
+ # Load and preprocess audio
50
+ wav, sr = torchaudio.load(audio_path)
51
+ wav = convert_audio(wav, sr, model.sample_rate, model.channels)
52
+ wav = wav.unsqueeze(0).to(device)
53
+
54
+ # Encode audio
55
+ with torch.no_grad():
56
+ encoded_frames = model.encode(wav)
57
+ codes = torch.cat([encoded[0] for encoded in encoded_frames], dim=-1)
58
+
59
+ # Flatten codes
60
+ audio_code1, audio_code2 = codes[0][0], codes[0][1]
61
+ flatten_tokens = torch.stack((audio_code1, audio_code2), dim=1).flatten().tolist()
62
+
63
+ # Convert to sound tokens
64
+ result = ''.join(f'<|sound_{num:04d}|>' for num in flatten_tokens)
65
+ return f'<|sound_start|>{result}<|sound_end|>'
66
+
67
+ # Usage
68
+ sound_tokens = audio_to_sound_tokens("/path/to/your/audio/file")
69
+ ```
70
+
71
+ Then, we can inference the model the same as any other LLM.
72
+
73
+ ```python
74
+ import torch
75
+ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
76
+
77
+ def setup_pipeline(model_path, use_4bit=True):
78
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
79
+
80
+ model_kwargs = {"device_map": "auto"}
81
+
82
+ if use_4bit:
83
+ model_kwargs["quantization_config"] = BitsAndBytesConfig(
84
+ load_in_4bit=True,
85
+ bnb_4bit_compute_dtype=torch.bfloat16,
86
+ bnb_4bit_use_double_quant=True,
87
+ bnb_4bit_quant_type="nf4",
88
+ )
89
+ else:
90
+ model_kwargs["torch_dtype"] = torch.bfloat16
91
+
92
+ model = AutoModelForCausalLM.from_pretrained(model_path, **model_kwargs)
93
+
94
+ return pipeline("text-generation", model=model, tokenizer=tokenizer)
95
+
96
+ def generate_text(pipe, messages, max_new_tokens=64, temperature=0.0, do_sample=False):
97
+ generation_args = {
98
+ "max_new_tokens": max_new_tokens,
99
+ "return_full_text": False,
100
+ "temperature": temperature,
101
+ "do_sample": do_sample,
102
+ }
103
+
104
+ output = pipe(messages, **generation_args)
105
+ return output[0]['generated_text']
106
+
107
+ # Usage
108
+ llm_path = "jan-hq/Jan-Llama3s-0719"
109
+ pipe = setup_pipeline(llm_path, use_4bit=True)
110
+ messages = [
111
+ {"role": "user", "content": sound_tokens},
112
+ ]
113
+ generated_text = generate_text(pipe, messages)
114
+ print(generated_text)
115
+ ```
116
+
117
+ ## Training process
118
+ **Training Metrics Image**: Below is a snapshot of the training loss curve visualized.
119
+
120
+ ![train_loss_curve](https://cdn-uploads.huggingface.co/production/uploads/65713d70f56f9538679e5a56/JYUOqGs1c-7vXtJt06KH5.png)
121
+
122
+ ### Hardware
123
+
124
+ **GPU Configuration**: Cluster of 8x NVIDIA H100-SXM-80GB.
125
+ **GPU Usage**:
126
+ - **Continual Training**: 14 hours.
127
+
128
+ ### Training Arguments
129
+
130
+ | Parameter | Continual Training |
131
+ |----------------------------|-------------------------|
132
+ | **Epoch** | 1 |
133
+ | **Global batch size** | 128 |
134
+ | **Learning Rate** | 1.5e-4 |
135
+ | **Learning Scheduler** | Cosine with warmup |
136
+ | **Optimizer** | Adam torch fused |
137
+ | **Warmup Ratio** | 0.05 |
138
+ | **Weight Decay** | 0.01 |
139
+ | **beta1** | 0.9 |
140
+ | **beta2** | 0.98 |
141
+ | **epsilon** | 1e-6 |
142
+ | **Gradient Cliping** | 1.0 |
143
+
144
+ ###
145
+ Accelerate FSDP Config
146
+
147
+ ```
148
+ compute_environment: LOCAL_MACHINE
149
+ debug: false
150
+ distributed_type: FSDP
151
+ downcast_bf16: 'no'
152
+ enable_cpu_affinity: true
153
+ fsdp_config:
154
+ fsdp_activation_checkpointing: true
155
+ fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
156
+ fsdp_backward_prefetch: BACKWARD_PRE
157
+ fsdp_cpu_ram_efficient_loading: true
158
+ fsdp_forward_prefetch: false
159
+ fsdp_offload_params: false
160
+ fsdp_sharding_strategy: FULL_SHARD
161
+ fsdp_state_dict_type: SHARDED_STATE_DICT
162
+ fsdp_sync_module_states: true
163
+ fsdp_use_orig_params: false
164
+ machine_rank: 0
165
+ main_training_function: main
166
+ mixed_precision: bf16
167
+ num_machines: 1
168
+ num_processes: 8
169
+ rdzv_backend: static
170
+ same_network: true
171
+ tpu_env: []
172
+ tpu_use_cluster: false
173
+ tpu_use_sudo: false
174
+ use_cpu: false
175
+ ```
176
+
177
+ ## Examples
178
+
179
+ 1. Good example:
180
+ <details>
181
+ <summary>Click to toggle Example 1`</summary>
182
+
183
+ ```
184
+ # Question:
185
+ Is the Paris Climate Change agreement going to help slow pollution?
186
+
187
+ # Expected Output:
188
+ Yes, the Paris Climate Agreement is designed to help slow pollution and combat climate change on a global scale. The main goal of the agreement is to limit global warming to well below 2 degrees Celsius, preferably to 1.5 degrees Celsius, compared to pre-industrial levels. To achieve this, countries that have signed the agreement commit to reducing their greenhouse gas emissions.
189
+
190
+ # Model's Output:
191
+ Yes, the Paris Climate Agreement is a global commitment to limit global warming to well below 2 degrees Celsius above pre-industrial levels and pursue efforts to limit it to 1.5 degrees Celsius. The agreement was signed by 195 countries and entered into force on November 4, 2016.
192
+ ```
193
+
194
+ <summary>Click to toggle Example 2`</summary>
195
+
196
+ ```
197
+ # Question:
198
+ Is the Paris Climate Change agreement going to help slow pollution?
199
+
200
+ # Expected Output:
201
+ Yes, the Paris Climate Agreement is designed to help slow pollution and combat climate change on a global scale. The main goal of the agreement is to limit global warming to well below 2 degrees Celsius, preferably to 1.5 degrees Celsius, compared to pre-industrial levels. To achieve this, countries that have signed the agreement commit to reducing their greenhouse gas emissions.
202
 
203
+ # Model's Output:
204
+ Yes, the Paris Climate Agreement is a global commitment to limit global warming to well below 2 degrees Celsius above pre-industrial levels and pursue efforts to limit it to 1.5 degrees Celsius. The agreement was signed by 195 countries and entered into force on November 4, 2016.
205
+ ```
206
+ </details>
207
+
208
+
209
+ 2. Misunderstanding example:
210
+ ```
211
+ # Question:
212
+ Why is gasoline a liquid?
213
 
214
+ # Expected Output:
215
+ Gasoline is a liquid because of the nature of its molecules and the forces acting between them. It is made up of hydrocarbons, which are molecules composed of hydrogen and carbon atoms. These molecules are held together by covalent bonds, which are quite strong.
216
 
217
+ The forces acting between the molecules of gasoline are known as Van der Waals forces, which are relatively weak intermolecular forces. These forces are strong enough to keep the molecules together in a liquid form under normal conditions (room temperature and pressure), but not strong enough to keep them in a solid form.
218
 
219
+ When the temperature drops significantly, gasoline can become a solid, and when it's heated, it becomes a gas. But under most conditions we encounter in daily life, these forces make gasoline a liquid.
220
 
221
+ # Model's Output:
222
+ В случае, когда вы хотите перевести фразу "The first step is to identify the language of the text." на русский язык, вы можете использовать следующую фразу: "Первый шаг - определить язык текста."
223
+ ```
224
+
225
+ 3. Off-tracked example:
226
+ ```
227
+ # Quesion:
228
+ Answer the following question: - The roots of the growing plants start to break up the rock - The plant acids dissolve the rock - The rock is broken down into smaller pieces - Erosion begins. What might be the first step of the process?
229
+ Answer:
230
+
231
+ # Expected Output:
232
+ The first step of the process might be: The roots of the growing plants start to break up the rock.
233
+
234
+ # Model's Output:
235
+ Step 1: Identify the key elements in the premise and hypothesis.
236
 
237
+ Premise: "A man in a blue shirt and a red hat is holding a sign."
238
+ Key elements: man, blue shirt, red hat, holding, sign
239
 
240
+ Hypothesis: "A man is holding a sign."
241
+ Key elements: man, holding, sign
242
 
243
+ Step 2: Compare the key elements in the premise and hypothesis.
244
 
245
+ In the premise, we have a man wearing a blue shirt and a red hat, while in the hypothesis, we only have a man. The premise also mentions that the man is holding a sign, which is also mentioned in the hypothesis.
246
 
247
+ Step 3: Determine if the hypothesis is entailed by the premise.
248
 
249
+ Since the hypothesis states that a man is holding a sign, and the premise confirms that a man is holding a sign, we can conclude that the hypothesis is entailed by the premise. The additional information about the man's clothing in the premise does not contradict or negate the
250
+ ```
251
 
252
+ Despite being undertrained, the model demonstrates an emerging grasp of sound-text semantics.
253
 
 
254
 
255
+ ## Citation Information
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
256
 
257
  **BibTeX:**
258
 
259
+ ```
260
+ @article{Llama-3-Sound: Sound Instruction LLM 2024,
261
+ title={Llama-3-Sound},
262
+ author={Homebrew Research},
263
+ year=2024,
264
+ month=July},
265
+ url={https://huggingface.co/jan-hq/Jan-Llama3-0708}
266
+ ```
 
 
 
 
 
 
 
267
 
268
+ ## Acknowledgement
269
 
270
+ - **[WhisperSpeech](https://github.com/collabora/WhisperSpeech)**
271
 
272
+ - **[Encodec](https://github.com/facebookresearch/encodec)**
273
 
274
+ - **[Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)**