|
--- |
|
datasets: |
|
- homebrewltd/instruction-speech-whispervq-v2 |
|
language: |
|
- en |
|
license: apache-2.0 |
|
tags: |
|
- sound language model |
|
pipeline_tag: audio-text-to-text |
|
--- |
|
|
|
## Model Details |
|
|
|
We have developed and released the family [llama3s](https://huggingface.co/collections/homebrew-research/llama3-s-669df2139f0576abc6eb7405). This family is natively understanding audio and text input. |
|
|
|
We continual pretrain on the expanded vocabulary [homebrewltd/llama3.1-s-whispervq-init](https://huggingface.co/homebrewltd/llama3.1-s-whispervq-init) with 900M tokens from [homebrewltd/raw-speech-whispervq-v1](https://huggingface.co/datasets/homebrewltd/raw-speech-whispervq-v1) dataset. |
|
|
|
**Model developers** Homebrew Research. |
|
|
|
**Input** Text and sound. |
|
|
|
**Output** Text. |
|
|
|
**Model Architecture** Llama-3. |
|
|
|
**Language(s):** English. |
|
|
|
## Intended Use |
|
|
|
**Intended Use Cases** This family is primarily intended for research applications. This version aims to further improve the LLM on sound understanding capabilities. |
|
|
|
**Out-of-scope** The use of llama3-s in any manner that violates applicable laws or regulations is strictly prohibited. |
|
|
|
## Training process |
|
**Training Metrics Image**: Below is a snapshot of the training loss curve visualized. |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/65713d70f56f9538679e5a56/gtpDSs750SkMPJO0-UtFq.png) |
|
|
|
**MMLU**: |
|
|
|
| Model | MMLU Score | |
|
| --- | --- | |
|
| llama3.5-instruct-8b | 69.40 | |
|
| ichigo-llama3.1-s-v0.3: phase 3 | 63.79 | |
|
| ichigo-llama3.1-s-v0.3: phase 2 | 63.08 | |
|
| ichigo-llama3.1-s-base-v0.3 | **42.11** | |
|
| llama3.5-instruct-v0.2 | 50.27 | |
|
|
|
### Hardware |
|
|
|
**GPU Configuration**: Cluster of 10x NVIDIA A6000-48GB. |
|
|
|
**GPU Usage**: |
|
- **Continual Training**: 30 hours. |
|
|
|
### Training Arguments |
|
|
|
We utilize [torchtune](https://github.com/pytorch/torchtune) library for the latest FSDP2 training code implementation. |
|
|
|
| Parameter | Continual Training | |
|
|----------------------------|-------------------------| |
|
| **Epoch** | 1 | |
|
| **Global batch size** | 480 | |
|
| **Learning Rate** | 2e-4 | |
|
| **Learning Scheduler** | Cosine with warmup | |
|
| **Optimizer** | AdamW fused | |
|
| **Warmup Steps** | 50 | |
|
| **Weight Decay** | 0.01 | |
|
| **Max Sequence Length** | 512 | |
|
|
|
|
|
## Citation Information |
|
|
|
**BibTeX:** |
|
|
|
``` |
|
@article{Llama3-S: Sound Instruction Language Model 2024, |
|
title={Llama3-S}, |
|
author={Homebrew Research}, |
|
year=2024, |
|
month=August}, |
|
url={https://huggingface.co/homebrewltd/llama3.1-s-2024-08-15} |
|
``` |
|
|
|
## Acknowledgement |
|
|
|
- **[WhisperSpeech](https://github.com/collabora/WhisperSpeech)** |
|
|
|
- **[Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct)** |