|
--- |
|
library_name: setfit |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
datasets: |
|
- hojzas/proj4-uniq_orig_order-lab1 |
|
metrics: |
|
- accuracy |
|
widget: |
|
- text: return list(dict.fromkeys(it)) |
|
- text: return [l for i, l in enumerate(it) if i == it.index(l)] |
|
- text: return list(dict.fromkeys(it).keys()) |
|
- text: return [value for key, value in enumerate(it) if value not in it[:key]] |
|
- text: " registered = set()\n register = registered.add\n return [x for\ |
|
\ x in it if not (x in registered or register(x))]" |
|
pipeline_tag: text-classification |
|
inference: true |
|
co2_eq_emissions: |
|
emissions: 0.5122324218344383 |
|
source: codecarbon |
|
training_type: fine-tuning |
|
on_cloud: false |
|
cpu_model: Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz |
|
ram_total_size: 251.49161911010742 |
|
hours_used: 0.002 |
|
hardware_used: 4 x NVIDIA RTX A5000 |
|
base_model: sentence-transformers/all-mpnet-base-v2 |
|
--- |
|
|
|
# SetFit with sentence-transformers/all-mpnet-base-v2 |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [hojzas/proj4-uniq_orig_order-lab1](https://huggingface.co/datasets/hojzas/proj4-uniq_orig_order-lab1) dataset that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 384 tokens |
|
- **Number of Classes:** 2 classes |
|
- **Training Dataset:** [hojzas/proj4-uniq_orig_order-lab1](https://huggingface.co/datasets/hojzas/proj4-uniq_orig_order-lab1) |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 0 | <ul><li>' outputSequence = []\n for input in it:\n found = 0\n for output in outputSequence:\n if output == input:\n found = 1\n break\n if not found:\n outputSequence.append(input)\n return outputSequence'</li><li>' uniq = []\n for char in it:\n if not char in uniq:\n uniq.append(char)\n return uniq'</li><li>'return sorted(set(it), key=lambda y: it.index(y)) '</li></ul> | |
|
| 1 | <ul><li>'return [tmp for tmp in dict.fromkeys(it).keys()]'</li><li>'return [i for i in dict.fromkeys(it)]'</li><li>'return list(dict.fromkeys(it))'</li></ul> | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("hojzas/proj4-uniq_orig_order-lab1") |
|
# Run inference |
|
preds = model("return list(dict.fromkeys(it))") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:--------|:----| |
|
| Word count | 2 | 20.9524 | 111 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0 | 13 | |
|
| 1 | 8 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (16, 16) |
|
- num_epochs: (1, 1) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 20 |
|
- body_learning_rate: (2e-05, 2e-05) |
|
- head_learning_rate: 2e-05 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:------:|:----:|:-------------:|:---------------:| |
|
| 0.0189 | 1 | 0.1783 | - | |
|
| 0.9434 | 50 | 0.0013 | - | |
|
|
|
### Environmental Impact |
|
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). |
|
- **Carbon Emitted**: 0.001 kg of CO2 |
|
- **Hours Used**: 0.002 hours |
|
|
|
### Training Hardware |
|
- **On Cloud**: No |
|
- **GPU Model**: 4 x NVIDIA RTX A5000 |
|
- **CPU Model**: Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz |
|
- **RAM Size**: 251.49 GB |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.0.3 |
|
- Sentence Transformers: 2.2.2 |
|
- Transformers: 4.36.1 |
|
- PyTorch: 2.1.2+cu121 |
|
- Datasets: 2.14.7 |
|
- Tokenizers: 0.15.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |