hn11235 commited on
Commit
5315727
·
1 Parent(s): 0c2af37

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +89 -0
README.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imagefolder
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: plant-seedlings-model
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: imagefolder
17
+ type: imagefolder
18
+ config: default
19
+ split: train
20
+ args: default
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.954140127388535
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # plant-seedlings-model
31
+
32
+ This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.2858
35
+ - Accuracy: 0.9541
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 0.0002
55
+ - train_batch_size: 16
56
+ - eval_batch_size: 8
57
+ - seed: 42
58
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
+ - lr_scheduler_type: linear
60
+ - num_epochs: 20
61
+ - mixed_precision_training: Native AMP
62
+
63
+ ### Training results
64
+
65
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
66
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
67
+ | 1.2496 | 1.27 | 500 | 1.2172 | 0.5637 |
68
+ | 0.7542 | 2.54 | 1000 | 0.8994 | 0.6898 |
69
+ | 0.6158 | 3.82 | 1500 | 0.6794 | 0.7720 |
70
+ | 0.4306 | 5.09 | 2000 | 0.4715 | 0.8331 |
71
+ | 0.3066 | 6.36 | 2500 | 0.4127 | 0.8567 |
72
+ | 0.2851 | 7.63 | 3000 | 0.3460 | 0.8803 |
73
+ | 0.3096 | 8.91 | 3500 | 0.2714 | 0.9019 |
74
+ | 0.1086 | 10.18 | 4000 | 0.2760 | 0.9268 |
75
+ | 0.1209 | 11.45 | 4500 | 0.2881 | 0.9229 |
76
+ | 0.1036 | 12.72 | 5000 | 0.2566 | 0.9357 |
77
+ | 0.0716 | 13.99 | 5500 | 0.2792 | 0.9382 |
78
+ | 0.0168 | 15.27 | 6000 | 0.2604 | 0.9376 |
79
+ | 0.0004 | 16.54 | 6500 | 0.3676 | 0.9363 |
80
+ | 0.0017 | 17.81 | 7000 | 0.2969 | 0.9529 |
81
+ | 0.0005 | 19.08 | 7500 | 0.2858 | 0.9541 |
82
+
83
+
84
+ ### Framework versions
85
+
86
+ - Transformers 4.28.1
87
+ - Pytorch 2.0.0+cu118
88
+ - Datasets 2.11.0
89
+ - Tokenizers 0.13.3