update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- imagefolder
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: plant-seedlings-model
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Image Classification
|
14 |
+
type: image-classification
|
15 |
+
dataset:
|
16 |
+
name: imagefolder
|
17 |
+
type: imagefolder
|
18 |
+
config: default
|
19 |
+
split: train
|
20 |
+
args: default
|
21 |
+
metrics:
|
22 |
+
- name: Accuracy
|
23 |
+
type: accuracy
|
24 |
+
value: 0.954140127388535
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# plant-seedlings-model
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.2858
|
35 |
+
- Accuracy: 0.9541
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 0.0002
|
55 |
+
- train_batch_size: 16
|
56 |
+
- eval_batch_size: 8
|
57 |
+
- seed: 42
|
58 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
+
- lr_scheduler_type: linear
|
60 |
+
- num_epochs: 20
|
61 |
+
- mixed_precision_training: Native AMP
|
62 |
+
|
63 |
+
### Training results
|
64 |
+
|
65 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
66 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
67 |
+
| 1.2496 | 1.27 | 500 | 1.2172 | 0.5637 |
|
68 |
+
| 0.7542 | 2.54 | 1000 | 0.8994 | 0.6898 |
|
69 |
+
| 0.6158 | 3.82 | 1500 | 0.6794 | 0.7720 |
|
70 |
+
| 0.4306 | 5.09 | 2000 | 0.4715 | 0.8331 |
|
71 |
+
| 0.3066 | 6.36 | 2500 | 0.4127 | 0.8567 |
|
72 |
+
| 0.2851 | 7.63 | 3000 | 0.3460 | 0.8803 |
|
73 |
+
| 0.3096 | 8.91 | 3500 | 0.2714 | 0.9019 |
|
74 |
+
| 0.1086 | 10.18 | 4000 | 0.2760 | 0.9268 |
|
75 |
+
| 0.1209 | 11.45 | 4500 | 0.2881 | 0.9229 |
|
76 |
+
| 0.1036 | 12.72 | 5000 | 0.2566 | 0.9357 |
|
77 |
+
| 0.0716 | 13.99 | 5500 | 0.2792 | 0.9382 |
|
78 |
+
| 0.0168 | 15.27 | 6000 | 0.2604 | 0.9376 |
|
79 |
+
| 0.0004 | 16.54 | 6500 | 0.3676 | 0.9363 |
|
80 |
+
| 0.0017 | 17.81 | 7000 | 0.2969 | 0.9529 |
|
81 |
+
| 0.0005 | 19.08 | 7500 | 0.2858 | 0.9541 |
|
82 |
+
|
83 |
+
|
84 |
+
### Framework versions
|
85 |
+
|
86 |
+
- Transformers 4.28.1
|
87 |
+
- Pytorch 2.0.0+cu118
|
88 |
+
- Datasets 2.11.0
|
89 |
+
- Tokenizers 0.13.3
|