metadata
license: mit
language: en license: apache-2.0
My BERT Model
This is a BERT model fine-tuned for extracting embeddings from CVs and startup descriptions for matching purposes.
Model Details
- Architecture: BERT-base-uncased
- Use case: CV and Startup matching
- Training data: Not applicable (pre-trained model used)
How to use
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained("your_username/your_model_name")
model = BertModel.from_pretrained("your_username/your_model_name")
text = "Sample text"
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
outputs = model(**inputs)
embedding = outputs.last_hidden_state.mean(dim=1).detach().numpy()