eugene-yang's picture
git update readme
1e945e8
|
raw
history blame
3.02 kB
metadata
language:
  - en
  - fa
tags:
  - clir
  - colbertx
  - plaidx
  - xlm-roberta-large
datasets:
  - ms_marco
  - hltcoe/tdist-msmarco-scores
task_categories:
  - text-retrieval
  - information-retrieval
task_ids:
  - passage-retrieval
  - cross-language-retrieval
license: mit

ColBERT-X for English-Persian CLIR using Translate-Distill

CLIR Model Setting

  • Query language: English
  • Query length: 32 token max
  • Document language: Persian
  • Document length: 180 token max (please use MaxP to aggregate the passage score if needed)

Model Description

Translate-Distill is a training technique that produces state-of-the-art CLIR dense retrieval model through translation and distillation. plaidx-large-fas-tdist-mt5xxl-engfas is trained with KL-Divergence from the mt5xxl MonoT5 reranker inferenced on English MS MARCO training queries and Persian translated passages.

Teacher Models:

Training Parameters

  • learning rate: 5e-6
  • update steps: 200,000
  • nway (number of passages per query): 6 (randomly selected from 50)
  • per device batch size (number of query-passage set): 8
  • training GPU: 8 NVIDIA V100 with 32 GB memory

Usage

To properly load ColBERT-X models from Huggingface Hub, please use the following version of PLAID-X.

pip install git+https://github.com/hltcoe/ColBERT-X.git@plaid-x

Following code snippet loads the model through Huggingface API.

from colbert.modeling.checkpoint import Checkpoint
from colbert.infra import ColBERTConfig

Checkpoint('hltcoe/plaidx-large-fas-tdist-mt5xxl-engfas', colbert_config=ColBERTConfig())

For full tutorial, please refer to the PLAID-X Jupyter Notebook, which is part of the SIGIR 2023 CLIR Tutorial.

BibTeX entry and Citation Info

Please cite the following two papers if you use the model.

@inproceedings{colbert-x,
    author = {Suraj Nair and Eugene Yang and Dawn Lawrie and Kevin Duh and Paul McNamee and Kenton Murray and James Mayfield and Douglas W. Oard},
    title = {Transfer Learning Approaches for Building Cross-Language Dense Retrieval Models},
    booktitle = {Proceedings of the 44th European Conference on Information Retrieval (ECIR)},
    year = {2022},
    url = {https://arxiv.org/abs/2201.08471}
}
@inproceedings{translate-distill,
    author = {Eugene Yang and Dawn Lawrie and James Mayfield and Douglas W. Oard and Scott Miller},
    title = {Translate-Distill: Learning Cross-Language Dense Retrieval by Translation and Distillation},
    booktitle = {Proceedings of the 46th European Conference on Information Retrieval (ECIR)},
    year = {2024},
    url = {https://arxiv.org/abs/2401.04810}
}