AndrewZeng
commited on
Commit
•
f7092b9
1
Parent(s):
eb75edf
Update README.md
Browse files
README.md
CHANGED
@@ -2,11 +2,26 @@
|
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
|
5 |
-
# Deita
|
6 |
|
7 |
-
Deita
|
8 |
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
```python
|
12 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
@@ -43,6 +58,7 @@ def infer_complexity(model, tokenizer, input_text):
|
|
43 |
score_npy = np.sum(score_npy, axis=0)
|
44 |
return score_npy
|
45 |
|
|
|
46 |
input_text = "write a performance review for a junior data scientist"
|
47 |
complexity_score = infer_complexity(model, tokenizer, input_text)
|
48 |
|
|
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
|
5 |
+
# Model Card for Deita Complexity Scorer
|
6 |
|
7 |
+
Deita is an open-sourced project designed to facilitate **Automatic Data Selection** for instruction tuning in Large Language Models (LLMs).
|
8 |
|
9 |
+
Deita Complexity Scorer is a tool for automatically annotating the Instruction Complexity of SFT data.
|
10 |
+
|
11 |
+
## Model description
|
12 |
+
|
13 |
+
- **Model type:** Model fine tuned to automatically annotate the Instruction Complexity
|
14 |
+
- **Language(s) (NLP):** Primarily English
|
15 |
+
- **Finetuned from model:** Llama-1-13b-hf
|
16 |
+
|
17 |
+
### Model Sources
|
18 |
+
|
19 |
+
- **Repository:** https://github.com/hkust-nlp/deita
|
20 |
+
- **Model Family:** Other models and the dataset are found in the [Deita collection](https://huggingface.co/collections/hkust-nlp/deita-6569c198c174808d94cf5bd4).
|
21 |
+
|
22 |
+
## Usage
|
23 |
+
|
24 |
+
Please use the following format
|
25 |
|
26 |
```python
|
27 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
58 |
score_npy = np.sum(score_npy, axis=0)
|
59 |
return score_npy
|
60 |
|
61 |
+
# example input
|
62 |
input_text = "write a performance review for a junior data scientist"
|
63 |
complexity_score = infer_complexity(model, tokenizer, input_text)
|
64 |
|