AndrewZeng commited on
Commit
f7092b9
1 Parent(s): eb75edf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -3
README.md CHANGED
@@ -2,11 +2,26 @@
2
  license: apache-2.0
3
  ---
4
 
5
- # Deita-Quality-Scorer
6
 
7
- Deita-Quality-Scorer is a tool for automatically annotating the Instruction Complexity of SFT data.
8
 
9
- ## Uses
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
  ```python
12
  from transformers import AutoTokenizer, AutoModelForCausalLM
@@ -43,6 +58,7 @@ def infer_complexity(model, tokenizer, input_text):
43
  score_npy = np.sum(score_npy, axis=0)
44
  return score_npy
45
 
 
46
  input_text = "write a performance review for a junior data scientist"
47
  complexity_score = infer_complexity(model, tokenizer, input_text)
48
 
 
2
  license: apache-2.0
3
  ---
4
 
5
+ # Model Card for Deita Complexity Scorer
6
 
7
+ Deita is an open-sourced project designed to facilitate **Automatic Data Selection** for instruction tuning in Large Language Models (LLMs).
8
 
9
+ Deita Complexity Scorer is a tool for automatically annotating the Instruction Complexity of SFT data.
10
+
11
+ ## Model description
12
+
13
+ - **Model type:** Model fine tuned to automatically annotate the Instruction Complexity
14
+ - **Language(s) (NLP):** Primarily English
15
+ - **Finetuned from model:** Llama-1-13b-hf
16
+
17
+ ### Model Sources
18
+
19
+ - **Repository:** https://github.com/hkust-nlp/deita
20
+ - **Model Family:** Other models and the dataset are found in the [Deita collection](https://huggingface.co/collections/hkust-nlp/deita-6569c198c174808d94cf5bd4).
21
+
22
+ ## Usage
23
+
24
+ Please use the following format
25
 
26
  ```python
27
  from transformers import AutoTokenizer, AutoModelForCausalLM
 
58
  score_npy = np.sum(score_npy, axis=0)
59
  return score_npy
60
 
61
+ # example input
62
  input_text = "write a performance review for a junior data scientist"
63
  complexity_score = infer_complexity(model, tokenizer, input_text)
64