PeterV09 commited on
Commit
7ebf574
1 Parent(s): 21ebc9e

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -0
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - hkust-nlp/deita-6k-v0
5
+ language:
6
+ - en
7
+ ---
8
+
9
+ <img src="https://huggingface.co/datasets/hkust-nlp/deita-images/resolve/main/logo-final.png" alt="Deita banner" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
10
+
11
+ # Model Card for Deita 7B V1.0
12
+
13
+ Deita is an open-sourced project designed to facilitate **Automatic Data Selection** for instruction tuning in Large Language Models (LLMs).
14
+ Deita 7B V1.0 is a fine-tuned + DPO version of Mistral-7B-v0.1 that was trained on 6k automatically selected lightweight, high-quality alignment SFT data: [Deita 6K V0](https://huggingface.co/datasets/hkust-nlp/deita-6k-v0) and 10K randomly sampled alignment preference data from Ultrafeedback.
15
+
16
+ ## Model description
17
+
18
+ - **Model type:** Model trained on automatically selected lightweight, high-quality alignment SFT data and 10K randomly sampled alignment preference data.
19
+ - **Language(s) (NLP):** Primarily English
20
+ - **Finetuned from model:** Mistral-7B-v0.1
21
+
22
+ ### Model Sources
23
+
24
+ - **Repository:** https://github.com/hkust-nlp/deita
25
+ - **Model Family:** Other models and the dataset are found in the [Deita collection](https://huggingface.co/collections/hkust-nlp/deita-6569c198c174808d94cf5bd4).
26
+
27
+ ## Performance
28
+ | Model | Align | Data Size | MT-Bench | AlpacaEval(%) | OpenLLM (Avg.) |
29
+ |------------------------------------------------|-----------|------------|----------|---------------|----------------|
30
+ | **Proprietary Models** | | | | | |
31
+ | GPT-4-Turbo | ? | -- | 9.32 | 97.70 | -- |
32
+ | GPT-4 | SFT + PPO | -- | 8.99 | 95.03 | -- |
33
+ | Claude-2 | SFT + PPO | -- | 8.06 | 91.36 | -- |
34
+ | GPT-3.5-turbo | SFT + PPO | -- | 7.94 | 89.37 | -- |
35
+ | **Open-sourced Models based on Mistral-7B** | | | | | |
36
+ | Mistral-7B-Instruct-v0.1 | -- | -- | 6.84 | 69.65 | 60.45 |
37
+ | Zephyr-7B-sft | SFT | 200K SFT | 5.32 | 75.12 | 60.93 |
38
+ | Zephyr-7B-beta | SFT + DPO | 200K SFT + 60K DPO | 7.34 | 90.60 | 66.36 |
39
+ | OpenChat-3.5 | C-RLFT | >70K C-RLFT | 7.81 | 88.51 | -- |
40
+ | Starling-7B | C-RLFT + APA | >70K C-RLFT + 183K APA | 8.09 | 91.99 | -- |
41
+ | Random | SFT | 10K SFT | 5.89 | 56.90 | 61.72 |
42
+ | DEITA-7B-v1.0-sft | SFT | 6K SFT | 7.22 | 80.78 | 64.94 |
43
+ | DEITA-7B-v1.0-sft | SFT | 10K SFT | 7.32 | 81.67 | 64.00 |
44
+ | DEITA-7B-v1.0 | SFT + DPO | 6K SFT + 10K DPO | 7.55 | 90.06 | 69.86 |
45
+
46
+ ## Input Format
47
+
48
+ The model is trained using the [vicuna_v1.1 template](https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py)
49
+
50
+ ### SFT Format
51
+
52
+ ```
53
+ A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Hello! ASSISTANT: Hi!</s>USER: How are you? ASSISTANT:
54
+ ```
55
+
56
+ ### DPO Format
57
+
58
+ ```
59
+ A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <prompt> ASSISTANT: <answer></s>
60
+ ```
61
+
62
+ where \<answer\> can be a chosen answer or a rejected answer.
63
+
64
+ ### Training hyperparameters
65
+
66
+ The following hyperparameters were used during training:
67
+ - learning_rate: 2e-05
68
+ - train_batch_size: 1
69
+ - eval_batch_size: 1
70
+ - seed: 42
71
+ - distributed_type: multi-GPU
72
+ - num_devices: 4
73
+ - gradient_accumulation_steps: 128
74
+ - total_train_batch_size: 512
75
+ - total_eval_batch_size: 4
76
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
77
+ - lr_scheduler_type: cosine
78
+ - lr_scheduler_warmup_ratio: 0.1
79
+ - num_epochs: 6.0
80
+
81
+ ### Framework versions
82
+
83
+ - Transformers 4.34.1
84
+ - Pytorch 2.1.0+cu121
85
+ - Datasets 2.14.6
86
+ - Tokenizers 0.14.1