hkivancoral commited on
Commit
50c18c1
1 Parent(s): 7216234

End of training

Browse files
README.md ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: microsoft/beit-base-patch16-224
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: smids_1x_beit_base_adamax_0001_fold5
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: image-classification
16
+ dataset:
17
+ name: imagefolder
18
+ type: imagefolder
19
+ config: default
20
+ split: test
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.88
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # smids_1x_beit_base_adamax_0001_fold5
32
+
33
+ This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.8148
36
+ - Accuracy: 0.88
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 0.0001
56
+ - train_batch_size: 32
57
+ - eval_batch_size: 32
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - lr_scheduler_warmup_ratio: 0.1
62
+ - num_epochs: 50
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
68
+ | 0.3159 | 1.0 | 75 | 0.2787 | 0.8933 |
69
+ | 0.2494 | 2.0 | 150 | 0.2824 | 0.8917 |
70
+ | 0.1709 | 3.0 | 225 | 0.2857 | 0.89 |
71
+ | 0.0771 | 4.0 | 300 | 0.3708 | 0.8933 |
72
+ | 0.0554 | 5.0 | 375 | 0.4256 | 0.895 |
73
+ | 0.0571 | 6.0 | 450 | 0.4870 | 0.8867 |
74
+ | 0.0043 | 7.0 | 525 | 0.5217 | 0.9017 |
75
+ | 0.0346 | 8.0 | 600 | 0.5838 | 0.8983 |
76
+ | 0.0305 | 9.0 | 675 | 0.5589 | 0.89 |
77
+ | 0.0299 | 10.0 | 750 | 0.6507 | 0.8833 |
78
+ | 0.0112 | 11.0 | 825 | 0.7257 | 0.885 |
79
+ | 0.0571 | 12.0 | 900 | 0.6425 | 0.8933 |
80
+ | 0.0111 | 13.0 | 975 | 0.6434 | 0.885 |
81
+ | 0.0007 | 14.0 | 1050 | 0.6590 | 0.8917 |
82
+ | 0.0158 | 15.0 | 1125 | 0.6659 | 0.895 |
83
+ | 0.0001 | 16.0 | 1200 | 0.6546 | 0.8983 |
84
+ | 0.0007 | 17.0 | 1275 | 0.6736 | 0.8867 |
85
+ | 0.0231 | 18.0 | 1350 | 0.7021 | 0.8917 |
86
+ | 0.0081 | 19.0 | 1425 | 0.7031 | 0.8917 |
87
+ | 0.0001 | 20.0 | 1500 | 0.7077 | 0.8833 |
88
+ | 0.0034 | 21.0 | 1575 | 0.6794 | 0.885 |
89
+ | 0.0184 | 22.0 | 1650 | 0.7927 | 0.865 |
90
+ | 0.0002 | 23.0 | 1725 | 0.7523 | 0.8783 |
91
+ | 0.0048 | 24.0 | 1800 | 0.7237 | 0.885 |
92
+ | 0.0065 | 25.0 | 1875 | 0.7425 | 0.8867 |
93
+ | 0.0064 | 26.0 | 1950 | 0.7940 | 0.8833 |
94
+ | 0.0055 | 27.0 | 2025 | 0.7223 | 0.8983 |
95
+ | 0.0092 | 28.0 | 2100 | 0.7594 | 0.8933 |
96
+ | 0.0 | 29.0 | 2175 | 0.7361 | 0.89 |
97
+ | 0.0 | 30.0 | 2250 | 0.7567 | 0.89 |
98
+ | 0.017 | 31.0 | 2325 | 0.7474 | 0.8883 |
99
+ | 0.0029 | 32.0 | 2400 | 0.8687 | 0.8767 |
100
+ | 0.0165 | 33.0 | 2475 | 0.8109 | 0.8883 |
101
+ | 0.0031 | 34.0 | 2550 | 0.8076 | 0.885 |
102
+ | 0.0039 | 35.0 | 2625 | 0.8393 | 0.8833 |
103
+ | 0.0031 | 36.0 | 2700 | 0.8234 | 0.8817 |
104
+ | 0.0001 | 37.0 | 2775 | 0.8155 | 0.8833 |
105
+ | 0.0034 | 38.0 | 2850 | 0.8110 | 0.89 |
106
+ | 0.0036 | 39.0 | 2925 | 0.8344 | 0.8817 |
107
+ | 0.0002 | 40.0 | 3000 | 0.8172 | 0.8833 |
108
+ | 0.0025 | 41.0 | 3075 | 0.8298 | 0.8817 |
109
+ | 0.0021 | 42.0 | 3150 | 0.8481 | 0.8817 |
110
+ | 0.0001 | 43.0 | 3225 | 0.8405 | 0.8817 |
111
+ | 0.0035 | 44.0 | 3300 | 0.8375 | 0.8833 |
112
+ | 0.0006 | 45.0 | 3375 | 0.8281 | 0.885 |
113
+ | 0.0024 | 46.0 | 3450 | 0.8226 | 0.8833 |
114
+ | 0.0 | 47.0 | 3525 | 0.8109 | 0.8817 |
115
+ | 0.0 | 48.0 | 3600 | 0.8113 | 0.88 |
116
+ | 0.0026 | 49.0 | 3675 | 0.8154 | 0.88 |
117
+ | 0.0067 | 50.0 | 3750 | 0.8148 | 0.88 |
118
+
119
+
120
+ ### Framework versions
121
+
122
+ - Transformers 4.35.2
123
+ - Pytorch 2.1.0+cu118
124
+ - Datasets 2.15.0
125
+ - Tokenizers 0.15.0
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:16bfa3ffe6e6b64e99244dd61b40dcc87bde156f80962fc93ba6db5f6c7fbe0d
3
  size 343083404
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d792718073667ad2d4427ec365c7494e7b0523f7530392b27fb9244c558b1c3
3
  size 343083404
runs/Nov30_15-07-40_f888a2bfcfb9/events.out.tfevents.1701356860.f888a2bfcfb9.842.9 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2790cad2aec9b1d9dd868ba96f0f71eda78709801cbcd7071952b6ef17549050
3
- size 78302
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6095bcad98a2a10c3a1c4400e5e10b555cc97995cd6af430968914affdd5247
3
+ size 80235