hjkim00's picture
Upload TestTime-RLVR-v2 from Full-pipeline-relative_0827 branch
f50dc54 verified
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# https://github.com/QwenLM/QwQ/blob/main/eval/eval/math_opensource_utils/python_executor.py
import copy
import datetime
import io
import logging
import pickle
import traceback
from concurrent.futures import TimeoutError
from contextlib import redirect_stdout
from functools import partial
from typing import Any, Dict, Optional, List, Tuple
import ast
import time
import numpy as np
import dateutil.relativedelta
import regex
from pebble import ProcessPool
from timeout_decorator import timeout
from tqdm import tqdm
from absolute_zero_reasoner.utils.code_utils.templates import (
RUN_CODE_TEMPLATE,
EVAL_INPUT_PREDICTION_TEMPLATE,
EVAL_OUTPUT_PREDICTION_TEMPLATE,
VALIDATE_CODE_TEMPLATE,
CHECK_DETERMINISM_TEMPLATE,
EVAL_K_INPUT_PREDICTION_TEMPLATE,
EVAL_K_OUTPUT_PREDICTION_TEMPLATE,
)
from absolute_zero_reasoner.utils.code_utils.checks import contains_banned_imports
from absolute_zero_reasoner.utils.code_utils.parsers import parse_error
class GenericRuntime:
GLOBAL_DICT = {}
LOCAL_DICT = None
HEADERS = []
def __init__(self):
self._global_vars = copy.copy(self.GLOBAL_DICT)
self._local_vars = copy.copy(self.LOCAL_DICT) if self.LOCAL_DICT else None
for c in self.HEADERS:
self.exec_code(c)
def exec_code(self, code_piece: str) -> None:
if regex.search(r'(\s|^)?input\(', code_piece):
# regex.search(r'(\s|^)?os.', code_piece):
raise RuntimeError()
exec(code_piece, self._global_vars)
# TODO: use: https://github.com/shroominic/codebox-api
# @high safe exec in sandbox
# byte_code = compile_restricted(
# code_piece,
# filename='<inline code>',
# mode='exec'
# )
# print("global vars:", self._global_vars)
# _print_ = PrintCollector
# exec(byte_code, {'__builtins__': utility_builtins}, None)
def eval_code(self, expr: str) -> Any:
return eval(expr, self._global_vars)
def inject(self, var_dict: Dict[str, Any]) -> None:
for k, v in var_dict.items():
self._global_vars[k] = v
@property
def answer(self):
return self._global_vars['answer']
class DateRuntime(GenericRuntime):
GLOBAL_DICT = {
'datetime': datetime.datetime,
'timedelta': dateutil.relativedelta.relativedelta,
'relativedelta': dateutil.relativedelta.relativedelta
}
class CustomDict(dict):
def __iter__(self):
return list(super().__iter__()).__iter__()
class ColorObjectRuntime(GenericRuntime):
GLOBAL_DICT = {'dict': CustomDict}
class PythonExecutor:
def __init__(
self,
runtime: Optional[Any] = None,
get_answer_symbol: Optional[str] = None,
get_answer_expr: Optional[str] = None,
get_answer_from_stdout: bool = False,
timeout_length: int = 10,
ast_check: bool = False,
max_workers: int = 1,
) -> None:
self.runtime = runtime if runtime else GenericRuntime()
self.answer_symbol = get_answer_symbol
self.answer_expr = get_answer_expr
self.get_answer_from_stdout = get_answer_from_stdout
self.timeout_length = timeout_length
self.ast_check = ast_check
self.max_workers = max_workers
self._process_pool = None
def __del__(self):
try:
self.cleanup()
# self.pool.terminate()
except Exception as e:
print(f"Error terminating pool: {e}")
pass
def cleanup(self):
"""Explicitly clean up the process pool"""
if self._process_pool is not None:
self._process_pool.close()
self._process_pool.join()
self._process_pool = None
def _get_process_pool(self, size_hint):
"""Get or create a ProcessPool with appropriate size"""
if self._process_pool is None:
self._process_pool = ProcessPool(max_workers=min(size_hint, self.max_workers))
return self._process_pool
def process_generation_to_code(self, gens: str):
return [g.strip().split('\n') for g in gens]
def run_code(self, code: str, inputs: str, imports: List[str] = []) -> Tuple[str, str]:
if isinstance(imports, np.ndarray):
imports = imports.tolist()
if imports:
code = '\n'.join(imports) + '\n' + code
code_snippet = RUN_CODE_TEMPLATE.format(code=code, inputs=inputs)
# print(code_snippet)
if self.ast_check:
try:
ast.parse(code_snippet)
except:
return '', 'error'
return self.apply(code_snippet)
def validate_code(self, code: str, inputs: str, imports: List[str] = []) -> bool:
if isinstance(imports, np.ndarray):
imports = imports.tolist()
if imports:
code = '\n'.join(imports) + '\n' + code
code_snippet = VALIDATE_CODE_TEMPLATE.format(code=code, inputs=inputs)
if self.ast_check:
try:
ast.parse(code_snippet)
except:
return False
_, status = self.apply(code_snippet)
return not 'error' in status.lower()
def eval_input_prediction(self, code: str, gold_output: str, agent_input: str, imports: List[str] = []) -> float:
if isinstance(imports, np.ndarray):
imports = imports.tolist()
if imports:
code = '\n'.join(imports) + '\n' + code
code_snippet = EVAL_INPUT_PREDICTION_TEMPLATE.format(code=code, gold_output=gold_output, agent_input=agent_input)
if self.ast_check:
try:
ast.parse(code_snippet)
except:
return 0.0
max_retries = 3
for retry in range(max_retries):
try:
correct, status = self.apply(code_snippet)
return 0.0 if 'error' in status.lower() or not eval(correct) else 1.0
except Exception as e:
if retry == max_retries - 1:
error_details = traceback.format_exc()
print(f"Error in eval_input_prediction: {e}\n{error_details}")
return
time.sleep(0.1 * (retry + 1)) # Exponential backoff
def eval_output_prediction(self, code: str, gold_output: str, agent_output: str, imports: List[str] = []) -> float:
try: # fast check if we dont need to run the code
if eval(gold_output) == eval(agent_output):
return 1.0
except:
pass
if isinstance(imports, np.ndarray):
imports = imports.tolist()
if imports:
code = '\n'.join(imports) + '\n' + code
code_snippet = EVAL_OUTPUT_PREDICTION_TEMPLATE.format(code=code, gold_output=gold_output, agent_output=agent_output)
if self.ast_check:
try:
ast.parse(code_snippet)
except:
return 0.0
max_retries = 3
for retry in range(max_retries):
try:
correct, status = self.apply(code_snippet)
return 0.0 if 'error' in status.lower() or not eval(correct) else 1.0
except Exception as e:
if retry == max_retries - 1:
error_details = traceback.format_exc()
print(f"Error in eval_output_prediction: {e}\n{error_details}")
return
time.sleep(0.1 * (retry + 1)) # Exponential backoff
def eval_k_input_prediction(self, code: str, gold_output: str, k_agent_inputs: List[str], imports: List[str] = []) -> List[float]:
if isinstance(imports, np.ndarray):
imports = imports.tolist()
if imports:
code = '\n'.join(imports) + '\n' + code
invalid_lists = []
valid_k_agent_inputs = []
for k_agent_input in k_agent_inputs:
try:
ast.parse(f'f({k_agent_input})')
valid_k_agent_inputs.append(k_agent_input)
except:
invalid_lists.append(0.0)
acc_list, status = self.apply(EVAL_K_INPUT_PREDICTION_TEMPLATE(code=code, gold_output=gold_output, k_agent_inputs=valid_k_agent_inputs))
assert 'error' not in status.lower()
output_acc = eval(acc_list) + invalid_lists
assert len(output_acc) == len(k_agent_inputs)
return output_acc
def eval_k_output_prediction(self, code: str, gold_output: str, k_agent_outputs: List[str], imports: List[str] = []) -> List[float]:
if isinstance(imports, np.ndarray):
imports = imports.tolist()
if imports:
code = '\n'.join(imports) + '\n' + code
invalid_lists = []
valid_k_agent_outputs = []
for k_agent_output in k_agent_outputs:
try:
if k_agent_output != '':
ast.parse(f'f({k_agent_output})')
valid_k_agent_outputs.append(k_agent_output)
else:
invalid_lists.append(0.0)
except:
invalid_lists.append(0.0)
acc_list, status = self.apply(EVAL_K_OUTPUT_PREDICTION_TEMPLATE(code=code, gold_output=gold_output, k_agent_outputs=valid_k_agent_outputs))
assert 'error' not in status.lower()
output_acc = eval(acc_list) + invalid_lists
assert len(output_acc) == len(k_agent_outputs)
return output_acc
def check_all(
self,
code: str,
inputs: str,
banned_keywords: List[str] = [],
check_determinism: bool = True,
imports: List[str] = [],
check_error: bool = False,
banned_keywords_for_errors_and_exceptions: List[str] = [],
) -> Tuple[bool, str]:
if isinstance(imports, np.ndarray):
imports = imports.tolist()
if imports:
code = '\n'.join(imports) + '\n' + code
if contains_banned_imports(code=code, banned_keywords=banned_keywords, banned_keywords_for_errors_and_exceptions=banned_keywords_for_errors_and_exceptions if check_error else []):
return False, None
if check_error:
code_snippet = RUN_CODE_TEMPLATE.format(code=code, inputs=inputs)
try:
ast.parse(code_snippet)
except:
return False, 'error'
output, status = self.apply(code_snippet)
if check_determinism: # run the code again, see if outputs are same
output_2, status_2 = self.apply(code_snippet)
if status_2.lower() != status.lower() and output != output_2:
return False, 'error'
# True if the code is valid code but might have error, output no error if the code returns something
return True, 'NoError' if status.lower() == 'done' else parse_error(status)
else:
if check_determinism:
code_snippet = CHECK_DETERMINISM_TEMPLATE.format(code=code, inputs=inputs)
else:
code_snippet = RUN_CODE_TEMPLATE.format(code=code, inputs=inputs)
if self.ast_check:
try:
ast.parse(code_snippet)
except:
return False, 'error'
output, status = self.apply(code_snippet)
return not 'error' in status.lower(), output
@staticmethod
def execute(
code,
get_answer_from_stdout=None,
runtime=None,
answer_symbol=None,
answer_expr=None,
timeout_length=10,
auto_mode=False
):
try:
if auto_mode:
if "print(" in code[-1]:
program_io = io.StringIO()
with redirect_stdout(program_io):
timeout(timeout_length)(runtime.exec_code)('\n'.join(code))
program_io.seek(0)
result = program_io.read()
else:
# print(code)
timeout(timeout_length)(runtime.exec_code)('\n'.join(code[:-1]))
result = timeout(timeout_length)(runtime.eval_code)(code[-1])
else:
if get_answer_from_stdout:
program_io = io.StringIO()
with redirect_stdout(program_io):
timeout(timeout_length)(runtime.exec_code)('\n'.join(code))
program_io.seek(0)
result = program_io.read()
elif answer_symbol:
timeout(timeout_length)(runtime.exec_code)('\n'.join(code))
result = runtime._global_vars[answer_symbol]
elif answer_expr:
timeout(timeout_length)(runtime.exec_code)('\n'.join(code))
result = timeout(timeout_length)(runtime.eval_code)(answer_expr)
else:
timeout(timeout_length)(runtime.exec_code)('\n'.join(code[:-1]))
result = timeout(timeout_length)(runtime.eval_code)(code[-1])
report = "Done"
str(result) # codec check
pickle.dumps(result) # serialization check
except:
result = ''
report = traceback.format_exc().split('\n')[-2]
return result, report
def apply(self, code):
return self.batch_apply([code])[0]
@staticmethod
def truncate(s, max_length=400):
half = max_length // 2
if len(s) > max_length:
s = s[:half] + "..." + s[-half:]
return s
def batch_apply(self, batch_code):
all_code_snippets = self.process_generation_to_code(batch_code)
timeout_cnt = 0
all_exec_results = []
pool = self._get_process_pool(len(all_code_snippets))
executor = partial(
self.execute,
get_answer_from_stdout=self.get_answer_from_stdout,
runtime=self.runtime,
answer_symbol=self.answer_symbol,
answer_expr=self.answer_expr,
timeout_length=self.timeout_length,
auto_mode=True
)
try:
future = pool.map(executor, all_code_snippets, timeout=self.timeout_length)
iterator = future.result()
if len(all_code_snippets) > 100:
progress_bar = tqdm(total=len(all_code_snippets), desc="Execute")
else:
progress_bar = None
while True:
try:
result = next(iterator)
all_exec_results.append(result)
except StopIteration:
break
except TimeoutError as error:
logging.warning(f"Timeout error in code execution: {error}")
all_exec_results.append(("", "Timeout Error"))
timeout_cnt += 1
except Exception as error:
logging.warning(f"Error in code execution: {error}")
all_exec_results.append(("", f"Error: {str(error)}"))
if progress_bar is not None:
progress_bar.update(1)
if progress_bar is not None:
progress_bar.close()
except Exception as e:
logging.error(f"Critical error in batch execution: {e}")
# Make sure we have results for all snippets
while len(all_exec_results) < len(all_code_snippets):
all_exec_results.append(("", f"Critical Error: {str(e)}"))
# Cleanup the pool on critical errors
self.cleanup()
batch_results = []
for code, (res, report) in zip(all_code_snippets, all_exec_results):
# post processing
res, report = str(res).strip(), str(report).strip()
res, report = self.truncate(res), self.truncate(report)
batch_results.append((res, report))
return batch_results
def _test():
batch_code = [
"""
def f(a):
return a
print(f(1,2))
"""
]
executor = PythonExecutor(get_answer_from_stdout=True)
predictions = executor.apply(batch_code[0])
print(predictions)
if __name__ == '__main__':
_test()