Update README.md
Browse files
README.md
CHANGED
@@ -45,7 +45,7 @@ generate_ids = model.generate(**inputs, max_new_tokens=256, streamer=streamer)
|
|
45 |
You could also alternatively launch a CLI demo by using the script in https://github.com/hiyouga/LLaMA-Efficient-Tuning
|
46 |
|
47 |
```bash
|
48 |
-
python src/cli_demo.py --model_name_or_path hiyouga/baichuan-13b-sft
|
49 |
```
|
50 |
|
51 |
---
|
@@ -54,6 +54,38 @@ You can reproduce our results by visiting the following step-by-step (Chinese) g
|
|
54 |
|
55 |
https://zhuanlan.zhihu.com/p/645010851
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
Loss curve:
|
58 |
|
59 |
![loss](loss.svg)
|
|
|
45 |
You could also alternatively launch a CLI demo by using the script in https://github.com/hiyouga/LLaMA-Efficient-Tuning
|
46 |
|
47 |
```bash
|
48 |
+
python src/cli_demo.py --template default --model_name_or_path hiyouga/baichuan-13b-sft
|
49 |
```
|
50 |
|
51 |
---
|
|
|
54 |
|
55 |
https://zhuanlan.zhihu.com/p/645010851
|
56 |
|
57 |
+
or using the following scripts in [LLaMA-Efficient-Tuning](https://github.com/hiyouga/LLaMA-Efficient-Tuning):
|
58 |
+
|
59 |
+
```bash
|
60 |
+
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
61 |
+
--stage sft \
|
62 |
+
--model_name_or_path baichuan-inc/Baichuan-13B-Base \
|
63 |
+
--do_train \
|
64 |
+
--dataset alpaca_gpt4_en,alpaca_gpt4_zh,self_cognition,oaast_sft,sharegpt_zh,refgpt_zh_p1,lima,self_cognition \
|
65 |
+
--template default \
|
66 |
+
--finetuning_type lora \
|
67 |
+
--lora_rank 32 \
|
68 |
+
--lora_target W_pack,o_proj,down_proj,up_proj,gate_proj \
|
69 |
+
--output_dir baichuan_13b_lora \
|
70 |
+
--per_device_train_batch_size 4 \
|
71 |
+
--gradient_accumulation_steps 8 \
|
72 |
+
--preprocessing_num_workers 16 \
|
73 |
+
--max_source_length 1024 \
|
74 |
+
--max_target_length 512 \
|
75 |
+
--optim paged_adamw_32bit \
|
76 |
+
--lr_scheduler_type cosine \
|
77 |
+
--logging_steps 10 \
|
78 |
+
--save_steps 100 \
|
79 |
+
--eval_steps 100 \
|
80 |
+
--warmup_steps 100 \
|
81 |
+
--learning_rate 3e-5 \
|
82 |
+
--max_grad_norm 0.5 \
|
83 |
+
--num_train_epochs 2.0 \
|
84 |
+
--quantization_bit 4 \
|
85 |
+
--plot_loss \
|
86 |
+
--fp16
|
87 |
+
```
|
88 |
+
|
89 |
Loss curve:
|
90 |
|
91 |
![loss](loss.svg)
|